Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-17T21:36:50.256Z Has data issue: false hasContentIssue false

Radiocarbon Age Offsets Between Living Organisms from the Marine and Continental Reservoir in Coastal Localities of Patagonia (Argentina)

Published online by Cambridge University Press:  18 July 2016

Roberto R Cordero
Affiliation:
Instituto de Geocronología y Geología Isotópica (INGEIS-CONICET), Pabellón INGEIS, Ciudad Universitaria. (1428) Buenos Aires, Argentina.
Héctor Panarello*
Affiliation:
Instituto de Geocronología y Geología Isotópica (INGEIS-CONICET), Pabellón INGEIS, Ciudad Universitaria. (1428) Buenos Aires, Argentina.
Sonia Lanzelotti
Affiliation:
Facultad de Filosofía y Letras, Universidad de Buenos Aires. Puán 480 (1406) Buenos Aires, Argentina. Email: sonia_lanzelotti@hotmail.com.
Cristian M Favier Dubois
Affiliation:
CONICET, INCUAPA, Departamento de Arqueología, Universidad Nacional del Centro de la Prov. de Buenos Aires, Av del Valle 5737 (7400) Olavarría, Argentina. Email: cfavier@coopenet.com.ar.
*
Corresponding author. Email: 221059@ingeis.uba.ar or hector@ingeis.uba.ar.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The radiocarbon of the local reservoir effect (RE) was observed in many sectors along the Argentinean Patagonic coast. Results show variations in the 14C offsets and differences between marine and continental species growing within the same locality, ranging from about 80–1100 yr BP. It is postulated that such variations are mainly due to local factors, including the coast morphology and the contribution of continental waters. The relevance of these kinds of studies for the interpretation of age in archaeological samples is highlighted in this paper.

Type
Articles
Copyright
Copyright © The Arizona Board of Regents on behalf of the University of Arizona 

References

Albero, M, Angiolini, FE, Piana, EL. 1986. Discordant ages related to reservoir effect of associated archaeologic remains from the Tunel Site, Beagle Channel, Argentine Republic. Radiocarbon 28(2A):748–53.CrossRefGoogle Scholar
Albero, M, Angiolini, FE, Piana, EL. 1987. Holocene 14C reservoir effect at Beagle Channel (Tierra del Fuego, Argentina Republic). Quaternary of South America and Antartic Peninsula 5:5971.Google Scholar
Bard, E, Arnold, M, Fairbanks, RG, Hamelin, B. 1993. 230Th-234U and 14C ages obtained by mass spectrometry on corals. Radiocarbon 35(1):191–9.Google Scholar
Borrero, LA. 1994–5. Arqueología de la Patagonia. Palimpsesto. Revista de Arqueología 4:969.Google Scholar
Codignotto, JO. 1996. Cuaternario y Dinámica Costera. Geología y Recursos Naturales de la Plataforma Continental Argentina. In: Ramos, VA, Turic, MA, editors. XIII Congreso Geológico Argentino y III Congreso de Exploración de Hidrocarburos. Relatorio 2:1728.Google Scholar
de Vries, H. 1958. Atom bomb effect: variations of radiocarbon in plants, shells, and snails in the past 4 years. Science 128:250–1.Google Scholar
Dye, T. 1994. Apparent ages of marine shells: implications for archaeological dating in Hawaii. Radiocarbon 36(1):51–7.Google Scholar
Figini, AJ. 1999. Comparación de edades C-14 en muestras de origen marino y terrestre. Efecto de reservorio. Actas del XII Congreso Nacional de Arqueología Argentina (II):353–6.Google Scholar
Gómez Otero, J. 1994. Reseña sobre la arqueología en la Provincia de Chubut. Guía de Campo Península Valdés y Centro Noroeste del Chubut. Séptima reunión de campo. Puerto Madryn: CADINQUA. p 2943.Google Scholar
Gómez Otero, J. 1995. Bases para una arqueología de la Costa Patagónica Central. Arqueología 5:61103.Google Scholar
Ingram, BL, Southon, JR. 1996. Reservoir ages in eastern Pacific coastal and estuarine waters. Radiocarbon 38(3):573–82.Google Scholar
Mancini, MV. 1998. Vegetational changes during the Holocene in Extra-Andean Patagonia, Santa Cruz Province, Argentina. Palaeogeography, Palaeoclimatology, Palaeoecology 138:207–19.Google Scholar
Markgraf, V. 1993. Paleoenvironments and paleoclimates in Tierra del Fuego and southernmost Patagonia, South America. Palaeogeography, Palaeoclimatology, Palaeoecology 102:5368.Google Scholar
Omoto, K. 1983. The problem and significance of radiocarbon geochronology in Antarctica. Camberra: Australian Academy of Science. p 450–2.Google Scholar
Orquera, LA, Piana, EL. 1999. El extremo Austral del Continente Nueva historia de la Nación Argentina. Academia Nacional de la Historia 1:233257.Google Scholar
Robinson, SW, Trimble, D. 1981. Natural and man-made radiocarbon as a tracer for coastal upwelling processes. In: Richards, FA, editor. Coastal Upwelling. Washington DC: American Geophysical Union. p 298302.CrossRefGoogle Scholar
Stuiver, M, Braziunas, TF. 1993. Modeling atmospheric 14C influences and 14C ages of marine samples to 10,000 BC. Radiocarbon 35(1):137–89.Google Scholar
Stuiver, M, Reimer, PJ. 1993. Extended 14C data base and revised Calib 3.0 14C age calibration program. Radiocarbon 35:215–30.Google Scholar
Stuiver, M, Reimer, PJ, Braziunas, TF. 1998. High-precision radiocarbon age calibration for terrestrial and marine samples. Radiocarbon 40(3):1127–51.Google Scholar
Suess, HE. 1955. Radiocarbon concentration in modern wood. Science 122:415–41.Google Scholar