Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-24T23:48:21.076Z Has data issue: false hasContentIssue false

Bark, a suitable biosorbent for the removal of uranium from wastewater – From laboratory to industry

Published online by Cambridge University Press:  16 December 2011

L. Jauberty
Affiliation:
Laboratoire de Chimie des Substances Naturelles EA1069, Faculté des Sciences et Techniques, 123 avenue Albert Thomas, 87060 Limoges, France Pe@rL SAS, 83 rue d’Isle, 87000 Limoges, France
V. Gloaguen
Affiliation:
Laboratoire de Chimie des Substances Naturelles EA1069, Faculté des Sciences et Techniques, 123 avenue Albert Thomas, 87060 Limoges, France
C. Astier
Affiliation:
Laboratoire de Chimie des Substances Naturelles EA1069, Faculté des Sciences et Techniques, 123 avenue Albert Thomas, 87060 Limoges, France
P. Krausz
Affiliation:
Laboratoire de Chimie des Substances Naturelles EA1069, Faculté des Sciences et Techniques, 123 avenue Albert Thomas, 87060 Limoges, France
V. Delpech
Affiliation:
Laboratoire de Chimie des Substances Naturelles EA1069, Faculté des Sciences et Techniques, 123 avenue Albert Thomas, 87060 Limoges, France Pe@rL SAS, 83 rue d’Isle, 87000 Limoges, France
A. Berland
Affiliation:
Pe@rL SAS, 83 rue d’Isle, 87000 Limoges, France
V. Granger
Affiliation:
Pe@rL SAS, 83 rue d’Isle, 87000 Limoges, France
I. Niort
Affiliation:
Pe@rL SAS, 83 rue d’Isle, 87000 Limoges, France
A. Royer
Affiliation:
Pe@rL SAS, 83 rue d’Isle, 87000 Limoges, France
J.-L. Decossas
Affiliation:
Pe@rL SAS, 83 rue d’Isle, 87000 Limoges, France
Get access

Abstract

This paper shows that natural materials such as barks can successfully replace synthetic resins for industrial purposes. Evaluated in batch conditions, biosorption of uranium on suitably prepared Douglas fir barks took place in less than 10 min and appeared to be optimum at pH>4. The biosorption process of uranium (uranyl form UO\hbox{$_{\mathrm{\mathbf{2}}}^{\mathrm{\mathbf{2+}}}$}2+2) was characterized in the optimal physico-chemical conditions and could be mathematically modeled as a Langmuir isotherm. With a maximum uranium specific uptake qmaxvalue of 1.16 meq.g-1 (138 mgU.g-1) it was found that the sorption capability of Douglas fir barks was at least five times higher for uranium than for other heavy metals such as lead. Adsorption of uranium contained in water leached from a former uranium mine was then monitored over a one-month period in a laboratory-scale chromatography column. The fixation capacity remained fairly constant throughout the whole testing period. Water radioactivity decreased from 1500 mBq.L-1 (0.12 mgU.L-1) to  <5 mBq.L-1(0.4 μ gU.L-1) at the column exit. This technology was successfully transferred and tested through a pilot project under industrial conditions with the support of AREVA NC.

Type
Research Article
Copyright
© EDP Sciences, 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adamson A.W. (1976) Physical chemistry of surfaces (J. Wiley & Sons, Ed.) New York, 1.
AFNOR (2005) Mesure de la radioactivité dans l’environnement – eau : mesurage de l’activité et de la concentration de l’uranium dans l’eau par spectrométrie alpha.
Al-Asheh, S.,Duvnjak, Z. (1998) Binary metal sorption by pine bark: study of equilibria and mechanisms, Separ. Sci. Technol. 33, 1303-1329. Google Scholar
Aoyama, M.,Honma, S.,Kasai, A.,Iseda, Y.,Nakajima, A.,Sakaguchi, T. (1991) Uranium uptake by conifer leaves, Holzforschung 45, 75-77. Google Scholar
Aoyama, M.,Seki, K.,Sensho, H.,Kasai, A. (1993) Adsorption of heavy metal ions by hardwood barks, Cellulose Chem. Technol. 27, 39-46. Google Scholar
Deshkar, A.M.,Bokade, S.S.,Dara, S.S. (1990) Modified Hardwickia binata bark for adsorption of mercury (II) from water, Wat. Res. 24, 1011-1016. Google Scholar
Desjardins R. (1988) Le traitement des eaux (École Polytechnique de Montréal, Ed.) Montréal, 366.
Gaballah, I.,Goy, D.,Allain, E.,Kilbertus, G.,Thauront, J. (1997) Recovery of copper through decontamination of synthetic solutions using modified barks, Metall. Mater. Trans. B 28, 13-23. Google Scholar
Gloaguen, V.,Morvan, H. (1997) Removal of heavy ions from aqueous solution by modified barks, J. Environ. Sci. Health A 32, 901-912. Google Scholar
Haleem Khan, M.,Warwick, P.,Evans, N. (2006) Spectrophotometric determination of uranium with arsenazo-III in perchloric acid, Chemosphere 63, 1165-1169. Google Scholar
Jansson-Charrier M., Guibal E., Surjous R., Le Cloirec P. (1995) Continuous removal of uranium by biosorption onto chitosan: application to an industrial effluent, in: Biohydrometallurgical processing (C.A. Jerez, T. Vargas, H. Toledo, J.V. Wiertz, Eds.) pp. 257-266, University of Chile, Santiago, Chile.
Kumar, P.,Dara, S.S. (1980) Modified barks for scavenging toxic heavy metal ions, Ind. J. Environ. Health 22, 196-202. Google Scholar
Martin-Dupont, F.,Gloaguen, V.,Granet, R.,Guilloton, M.,Krausz, P. (2004) Chemical modifications of Douglas fir bark, a lignocellulosic by-products - Enhancement of their lead (II) binding capacities, Separ. Sci. Technol. 39, 1-16. Google Scholar
Martin-Dupont, F., Gloaguen, V., Granet, R., Guilloton, M., Morvan, H., Krausz, P. (2002) Heavy metal adsorption by crude coniferous barks: a modeling study, J. Environ. Sci. Health A 37, 1063-1073. Google Scholar
Randall, J.,Berman, R.L.,Garrett, V.,Waiss, A.C. (1974) Use of bark to remove metal ions from waste solutions, Forest Prod. 24, 80-84. Google Scholar
Schneider I.A.H., Rubio J. (1995) New trends in biosorption of heavy metals by freshwater macrophytes, in: Biohydrometallurgical processing (C.A. Jerez, T. Vargas, H. Toledo, J.V. Wiertz, Eds.) pp. 247-256, University of Chile, Santiago, Chile.
Seki, K.,Saito, N.,Aoyama, M. (1997) Removal of heavy metal ions from solutions by coniferous barks, Wood Sci. Technol. 31, 441-447. Google Scholar
Veglio, F.,Beolchini, F.,Gasbarro, A. (1997) Biosorption of toxic metals: an equilibrium study using free cells of Arthrobacter sp., Process Biochem. 32, 99-105. Google Scholar
Volesky, B. (1986) Biosorbent materials, Biotechnol. Bioeng. Symp. 16, 121-126. Google Scholar
Waiss, A.C. Jr.,Wiley, M.E.,Kuhnle, J.A.,Potter, A.L.,McCready, R.M. (1973) Adsorption of mercuric cation by tannins in agricultural residues, J. Environ. Qual. 2, 369-371. Google Scholar
Weber W.J.P. (1972) Physicochemical processes for water quality control (J. Wiley & Sons, Ed.) New York, 200.