Skip to main content Accessibility help

Agroecosystem resilience and farmers’ perceptions of climate change impacts on cocoa farms in Alto Beni, Bolivia

  • Johanna Jacobi (a1), Monika Schneider (a2), Patrick Bottazzi (a1), Maria Pillco (a3), Patricia Calizaya (a4) and Stephan Rist (a1)...

Cocoa-based small-scale agriculture is the most important source of income for most farming families in the region of Alto Beni in the sub-humid foothills of the Andes. Cocoa is grown in cultivation systems of varying ecological complexity. The plantations are highly susceptible to climate change impacts. Local cocoa producers mention heat waves, droughts, floods and plant diseases as the main impacts affecting plants and working conditions, and they associate these impacts with global climate change. From a sustainable regional development point of view, cocoa farms need to become more resilient in order to cope with the climate change related effects that are putting cocoa-based livelihoods at risk. This study assesses agroecosystem resilience under three different cocoa cultivation systems (successional agroforestry, simple agroforestry and common practice monocultures). In a first step, farmers’ perceptions of climate change impacts were assessed and eight indicators of agroecological resilience were derived in a transdisciplinary process (focus groups and workshop) based on farmers’ and scientists’ knowledge. These indicators (soil organic matter, depth of Ah horizon, soil bulk density, tree species diversity, crop varieties diversity, ant species diversity, cocoa yields and infestation of cocoa trees with Moniliophthora perniciosa) were then surveyed on 15 cocoa farms and compared for the three different cultivation systems. Parts of the socio-economic aspects of resilience were covered by evaluating the role of cocoa cooperatives and organic certification in transitioning to more resilient cocoa farms (interviews with 15 cocoa farmers combined with five expert interviews). Agroecosystem resilience was higher under the two agroforestry systems than under common practice monoculture, especially under successional agroforestry. Both agroforestry systems achieved higher cocoa yields than common practice monoculture due to agroforestry farmers’ enhanced knowledge regarding cocoa cultivation. Knowledge sharing was promoted by local organizations facilitating organic certification. These organizations were thus found to enhance the social process of farmers’ integration into cooperatives and their reorientation toward organic principles and diversified agroforestry.

Corresponding author
* Corresponding author:
Hide All
1 Borron, S. 2006. Building Resilience for an Unpredictable Future: How Organic Agriculture Can Help Farmers to Adapt to Climate Change. FAO, Rome.
2 Verchot, L.V., Van Noordvik, M., Kandji, S., Tomich, T., Ong, C., Albrecht, A., Mackensen, J., Bantilan, C., Anupama, K.V., and Palm, C. 2007. Climate change: Linking adaptation and mitigation through agroforestry. Mitigation and Adaptation Strategies for Global Change 12:901918.
3 Millenium Development Goals Indicators. 2012. Carbon dioxide emissions (CO2), thousand metric tons of CO2 (CDIAC). Available at web site (verified January 11, 2013).
4 McDowell, J.Z. and Hess, J.J. 2012. Accessing adaptation: Multiple stressors on livelihoods in the Bolivian highlands under a changing climate. Global Environmental Change—Human and Policy Dimensions 22(2):342352.
5 Anim-Kwapong, G.J. and Frimpong, E.B. 2006. Vulnerability of Agriculture to Climate Change—Impact of Climate Change on Cocoa Production. Cocoa Research Institute of Ghana, Tafo.
6 Shapiro, H.Y. and Rosenquist, E.M. 2004. Public/private partnerships in agroforestry: The example of working together to improve cocoa sustainability. Agroforestry Systems 61–2(1):453462.
7 Ifejika Speranza, C. 2010. Resilient Adaptation to Climate Change in African Agriculture. Deutsches Institut für Entwicklungspolitik, Bonn.
8 Berkes, F. and Jolly, D. 2002. Adapting to climate change: Social-ecological resilience in a Canadian Western Arctic community. Conservation Ecology 5(2):18.
9 Tscharntke, T., Clough, Y., Bhagwat, S.A., Buchori, D., Faust, H., Hertel, D., Hölscher, D., Juhrbandt, J., Kessler, M., Perfecto, I., Scherber, C., Schroth, G., Veldkamp, E., and Wanger, T.C. 2011. Multifunctional shade-tree management in tropical agroforestry landscapes—a review. Journal of Applied Ecology 48:619629.
10 Nair, P.K.R. 2011. Carbon sequestration studies in agroforestry systems: A reality-check. Agroforestry Systems 86(2):243253.
11 Nair, P.K.R., Kumar, B.M., and Nair, V.D. 2009. Agroforestry as a strategy for carbon sequestration. Journal of Plant Nutrition and Soil Science 172:1023.
12 Adger, W.N. 2000. Social end ecological resilience: Are they related? Progress in Human Geography 24(3):18.
13 Milestad, R., and Darnhofer, I. 2003. Building farm resilience: The prospects and challenges of organic farming. Journal of Sustainable Agriculture 22(3):8197.
14 Obrist, B., Pfeiffer, C., and Henley, R. 2010. Multi-layered social resilience: A new approach in mitigation research. Progress in Development Studies 10(4):283293.
15 Altieri, M.A. and Nicholls, C.I. 2006. Agroecology and the Search for a Truly Sustainable Agriculture. University of California, Berkeley.
16 Muller, A., Osman-Elasha, B., and Andreasen, L. 2013. The potential of organic agriculture for contributing to climate change adaptation. In: Halberg, N. and Muller, A. (eds). Organic Agriculture for Sustainable Livelihoods. Earthscan, London, p. 101125.
17 Folke, C. 2006. Resilience: the emergence of a perspective for social–ecological systems analysis. Global Environmental Change 16:253267.
18 Lundberg, J. and Moberg, F. 2003. Mobile link organisms and ecosystem functioning: Implications for ecosystem resilience and management. Ecosystems 6(1):8798.
19 Wiesmann, U. 1998. Sustainable regional development in rural Africa: conceptual framework and case studies from Kenya [Habilitation]. University of Bern.
20 Gbetibouo, G.A. 2009. Understanding farmers’ perceptions and adaptations to climate change and variability. The case of the Limpopo Basin, South Africa. IFPRI Discussion Paper 00849, Washington, DC.
21 Hurni, H. and Wiesmann, U. 2004. Towards transdisciplinarity in sustainability-oriented research for development. In Hurni, H., Wiesmann, U. and Schertenleib, R. (eds). Research for mitigating Syndromes of Global Change. Geographica Bernensia, Bern, p. 3142.
22 Rist, S., Chidambaranathan, M., Escobar, C., Wiesmann, U., and Zimmermann, A. 2007. Moving from sustainable management to sustainable governance of natural resources: The role of social learning processes in rural India, Bolivia and Mali. Journal of Rural Studies 23(1):2337.
23 Ortiz, M. and Somarriba, E. 2005. Sombra y especies arbóreas en cacaotales del Alto Beni, Bolivia. Agroforestería en las Américas 43–44:5461.
24 Elbers, J. 2002. Agrarkolonisation im Alto Beni. Landschafts- und politisch-ökologische Entwicklungsforschung in einem Kolonisationsgebiet in den Tropen Boliviens. Doctoral thesis, Heinrich-Heine-University, Duesseldorf.
25 Bebbington, A., Quisbert, J., and Trujillo, G. 1996. Technology and rural development strategies in a small farmer organization: Lessons from Bolivia for rural policy and practice. Public Administration and Development 16:195213.
26 Altieri, M.A., Funes-Monzote, F.R., and Petersen, P. 2012. Agroecologically efficient agricultural systems for smallholder farmers: Contributions to food sovereignty. Agronomy for Sustainable Development 32(1):113.
27 Schulz, B., Becker, B., and Götsch, E. 1994. Indigenous knowledge in a modern sustainable agroforestry system—a case study from Brazil. Agroforestry Systems 25:5969.
28 Schulz, J. 2011. Imitating natural ecosystems through successional agroforestry for the regeneration of degraded lands—a case study of smallholder agriculture in northeastern Brazil. In Montagnini, F., Francesconi, W., and Rossi, E. (eds). Agroforestry as a Tool for Landscape Restoration. Nova Science Publishers, New York, p. 317.
29 World Bank. 2009. Bolivia. Country Note on Climate Change Aspects in Agriculture. World Bank, Washington, DC.
30 Cabell, J.F. and Oelofse, M. 2012. An indicator framework for assessing agroecosystem resilience. Ecology and Society 17(1):18.
31 Darnhofer, I., Fairweather, J., and Moller, H. 2010. Assessing a farm's sustainability: insights from resilience thinking. International Journal of Agricultural Sustainability 8(3):186198.
32 Rist, S. 2006. Natural resources, sustainability and social learning processes—pathways towards co-Production of knowledge for sustainable development [Habilitation]. University of Bern.
33 IIED. 2009. Community-based adaptation to climate change. Participatory Learning and Action (PLA). International Institute for Environment and Development, London.
34 LFP. 2010. Participatory Tools and Techniques for Assessing Climate Change Impacts and Exploring Adaptation Options. A community based tool kit for practitioners. Livelihoods and Forestry Programme (LFP) c/o DFID Nepal.
35 ICRAF. 2008. Tree Diversity analysis—A Manual and Software for Common Statistical Methods for Ecological and Biodiversity Studies. World Agroforestry Centre (ICRAF), Nairobi.
36 Martin, G. 2004. Ethnobotany: A Methods Manual. Earthscan, London.
37 Schroth, G. and Sinclair, F.L. 2003. Trees, Crops and Soil Fertility: Concepts and Research Methods. CABI, Wallingford.
38 van Reeuwijk, L.P. 1993. Procedures for Soil Analysis. International Soil Reference and Information Centre, Wageningen.
39 Kremen, C. and Miles, A. 2012. Ecosystem services in biologically diversified versus conventional farming systems: Benefits, externalities, and trade-offs. Ecology and Society 17(4):40.
40 Bhagwat, S.A., Willis, K.J., Birks, H.J., and Whittaker, R.J. 2008. Agroforestry: A refuge for tropical biodiversity? Trends in Ecology and Evolution 23(5):261267.
41 Sperber, C.F., Nakayama, K., Valverde, M.J., and de Siqueira Neves, F. 2004. Tree species richness and density affect parasitoid diversity in cacao agroforestry. Basic and Applied Ecology 5:241251.
42 Bisseleua, D.H.B., Missoup, A.D., and Vidal, S. 2009. Biodiversity conservation, ecosystem functioning, and economic incentives under cocoa agroforestry intensification. Conservation Biology 23(5):11761184.
43 Philpott, S.M., Bichier, P., Rice, R., and Greenberg, R. 2007. Field-testing ecological and economic benefits of coffee certification programs. Conservation Biology 21(4):975985.
44 Denison, R.F., Kiers Stuart, T., and West, A. 2003. Darwinian agriculture: when can humans find solutions beyond the reach of natural selection? Quarterly Review of Biology 78(2):145168.
45 Borkhataria, R.R., Collazo, J.A., and Groom, M.J. 2012. Species abundance and potential biological control services in shade vs. sun coffee in Puerto Rico. Agriculture, Ecosystems and Environment 151:15.
46 Milz, J. 2006. Einfluss von Anbau- und Pflegemaßnahmen auf die Hexenbesenkrankheit (Crinipellis perniciosa (Stahel) Singer) bei Kakaoklonen im Siedlungsgebiet Alto Beni—Bolivien. Doctoral thesis, Humboldt-Universität, Berlin.
47 Gerold, G. and Faust, H. 2005. Probleme landwirtschaftlicher Ressourcennutzung in einem tropischen Entwicklungsland—Agroforstsystem Kakao in Bolivien. Georg-August-Universität, Göttingen.
48 R Development Core Team 2011. A Language and Environment for Statistical Computing. Vienna.
49 Juhrbandt, J., Duwe, T., Barkmann, J., Gerold, G., and Marggraf, R. 2010. Structure and management of cocoa agroforestry systems in Central Sulawesi across an intensification gradient. In Tscharntke, T., Leuschner, C., Veldkamp, E., Faust, H., and Guhardja, E.B. (eds). Tropical Rainforests and Agroforests under Global Change: Ecological and Socio-economic Valuations, p. 115140. Springer-Verlag, Berlin.
50 Rice, R. and Greenberg, A. 2000. Cacao cultivation and the conservation of biological diversity. AMBIO: A Journal of the Human Environment 29(3):167173.
51 Vieira, D.L.M., Holl, K.D., and Peneireiro, F.M. 2009. Agro-successional restoration as a strategy to facilitate tropical forest recovery. Restoration Ecology 17(4):451459.
52 Clough, Y., Barkmann, J., Juhrbandt, J., Kessler, M., Wanger, T.C., Anshary, A., Buchori, D., Cicuzza, D., Darras, K., Putra, D.D., Erasmi, S., Pitopang, R., Schmidt, C., Schulze, C.H., Seidel, D., Steffan-Dewenter, I., Stenchly, K., Vidal, S., Weist, M., Wielgoss, A.C., and Tscharntke, T. 2011. Combining high biodiversity with high yields in tropical agroforests. Proceedings of the National Academy of Sciences of the United States of America 108(20):83118316.
53 UNEP-UNCTAD. 2008. Organic Agriculture and Food Security in Africa. UNEP-UNCTAD Capacity-building Task Force on Trade, Environment and Development, Geneva.
54 Panneerselvam, P., Hermansen, J., and Halberg, N. 2011. Food security of small holding farmers: Comparing organic and conventional systems in India. Journal of Sustainable Agriculture 35(1):4868.
55 Scialabba, N.E. and Hattam, C. 2002. Organic Agriculture, Environment and Food Security. FAO, Rome.
56 Badgley, C., Moghtader, J., Quintero, E., Zakem, E., Chappell, M.J., Aviles-Vazquez, K., Samulon, A., and Perfecto, I. 2007. Organic agriculture and the global food supply. Renewable Agriculture and Food Systems 22(2):86108.
57 Niggli, U., Schmid, H., and Fliessbach, A. 2007. Organic farming and climate change. Briefing prepared by the Research Institute of Organic Agriculture FiBL. International Trade Centre, Geneva.
58 Panneerselvam, P. and Halberg, N. 2013. Consequences of organic agriculture for smallholder farmers’ livelihood and food security. In Halberg, N. and Muller, A. (eds). Organic Agriculture for Sustainable Livelihoods. Earthscan, London.
59 Scialabba, N.E.-H. and Mueller-Lindenlauf, M. 2010. Organic agriculture and climate change. Renewable Agriculture and Food Systems 25(2):158169.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Renewable Agriculture and Food Systems
  • ISSN: 1742-1705
  • EISSN: 1742-1713
  • URL: /core/journals/renewable-agriculture-and-food-systems
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed