Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-25T10:33:53.542Z Has data issue: false hasContentIssue false

Options to improve family income, labor input and soil organic matter balances by soil management and maize–livestock interactions. Exploration of farm-specific options for a region in Southwest Mexico

Published online by Cambridge University Press:  29 April 2014

Diego Flores-Sánchez
Affiliation:
Colegio de Postgraduados, Km 36.5, Carretera México-Texcoco, C.P. 56230 Montecillo, Estado de México, México.
Jeroen C.J. Groot
Affiliation:
Department of Plant Sciences, Farming Systems Ecology group, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands.
Egbert A. Lantinga
Affiliation:
Department of Plant Sciences, Farming Systems Ecology group, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands.
Martin J. Kropff
Affiliation:
Department of Plant Sciences, Crop and Weed Ecology group, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands.
Walter A.H. Rossing*
Affiliation:
Department of Plant Sciences, Farming Systems Ecology group, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands.
*
*Corresponding author: walter.rossing@wur.nl

Abstract

Farming systems in the Costa Chica region in Mexico face limitations linked to low yields and soil fertility degradation. Several alternative maize-based cropping systems have been proposed to improve current limitations. These field-level options need to be evaluated at farm level in order to assess their feasibility, taking into account input requirements, contributions to self-sufficiency in food and long-term soil fertility, and the availability of labor. In this study, we defined four scenarios to explore consequences of changes in current farming systems for eight typical farms in the region; the first two scenarios comprised redressing current imbalances in crop nutrition and organic matter (OM) supply, respectively, and the last two scenarios explored high fertilizer input and animal husbandry. Farms responded in different ways to the various options depending on available land, current soil quality, current cropping systems and presence of livestock. Improvements in crop nutrition based on mineral fertilizers increased family income but only had substantial effects on soil OM (SOM) balances when fertilizer rates were double the amount currently subsidized. Addition of organic fertilizers resulted in positive effects on SOM balance, but with often strong trade-offs with family income due to costs of acquisition, transport and application. Animals played an important role in increasing SOM balances, but had relatively little effect on improving family income. The results demonstrated that improvements in family income and SOM balance at farm scale were feasible but that without more fundamental system changes trade-offs between short-term yield increases and longer-term soil fertility increases should be expected. The results highlight the need for policies that take into account farm-specific differences in crop and livestock intensification opportunities.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Herrero, M., Thornton, P.K., Notenbaert, A.M., Wood, S., Msangu, S., Freeman, H.A., Bossio, D., Dixon, J., Peters, M., van de Steeg, J., Lynam, J., Parthasarathy Rao, P., Macmillan, S., Gerard, B., McDermott, J., Seré, C., and Rosegrant, M. 2010. Smart investments in sustainable food production: Revisiting mixed crop–livestock systems. Science 327:822825.Google Scholar
2 Wiggins, S., Kirsten, J., and Llambí, L. 2010. The future of small farms. World Development 38:13411348.Google Scholar
3 CONEVAL. 2010. Informe de Pobreza Multidimensional en México, 2008. Consejo Nacional de Evaluación de la Política de Desarrollo Social, México, DF. p. 104.Google Scholar
4 Gómez, M.N.O. 2010. El maíz, Origen e Importancia Socioeconómica en el Estado de Guerrero. Revista Altamirano 40:4756.Google Scholar
5 Zizumbo-Villareal, D. and Colunga-García Marín, P. 2010. Origin of agriculture and plant domestication in West Mesoamerica. Genetic Resources and Crop Evolution 57:813825.Google Scholar
6 Kass, D.C.L. and Somarriba, E. 1999. Traditional fallows in Latin America. Agroforestry Systems 47:1336.Google Scholar
7 Flores-Sanchez, D., Kleine Koerkamp-Rabelista, J., Navarro-Garza, H., Lantinga, E.A., Groot, J.C.J., Kropff, M.J., and Rossing, W.A.H. 2011. Diagnosis of agro-ecological engineering of maize-based smallholder farming systems in Costa Chica, Guerrero state, Mexico. Nutrient Cycling in Agroecosystems 91(2):185205.Google Scholar
8 Secretaría de Desarrollo Rural de Guerrero. 2007. Anexo técnico del programa de fertilizantes subsidiado a productores de menores ingresos para la producción de granos básicos en el estado de Guerrero.Google Scholar
9 Gobierno del Estado de Guerrero. 2011. Reglas de operación del Programa de Fertilizante y Transparencia de Tecnología.Google Scholar
10 Flores-Sanchez, D., Pastor, A., Lantinga, E.A., Rossing, W.A.H., and Kropff, M.J. 2013. Exploring maize–legume intercropping systems in Southwest Mexico. Agroecology and Sustainable Food Systems 37:739761.Google Scholar
11 Marengo, J.A., Liebmann, B., Grimm, A.M., Misra, V., Silva Dias, P.L., Cavalcanti, I.F.A., Carvalho, L.M.V., Berbery, E.H., Ambrizzi, T., Vera, C.S., Saulo, A.C., Nogues-Paegle, J., Zipser, E., Seth, A., and Alves, L.M. 2012. Recent developments on the South American monsoon system. International Journal of Climatology 32:121.Google Scholar
12 Secretaría de Desarrollo Social. 2007. Cuaderno De Información Municipal Para La Planeación Municipal, 2007, Tecoanapa. Subsecretaría de Planeación y Prospectiva, Dirección General de Información Estadística y Geográfica, México. p. 77.Google Scholar
13 López, G.J.A. 2010. La diversidad y practicas de manejo de los animales domesticos en la región de la montaña del estado de Guerrero. MSc dissertation, Colegio de Postgraduados, Mexico. p. 109.Google Scholar
14 Cervantes, N.A., Hernández, C.E., and Jiménez, G.R. 2002. Diagnostico ganadero del estado de Guerrero. Universidad Autónoma de Guerrero FMV y Z—MSPAS—Fundación Guerrero, Mexico, A.C. p. 98.Google Scholar
15 Hyman, G., Fujisaka, S., Jones, P., Wood, S., de Vicente, M.C., and Dixon, J. 2008. Strategic approaches to targeting technology generation: Assessing the coincidence of poverty and drought-prone crop protection. Agricultural Systems 98:5061.Google Scholar
16 Janssen, B.H., Guiking, F.C.T., Van der Eijk, D., Smaling, E.M.A., Wolf, J., and van Reuler, H. 1990. A system for quantitative evaluation of the fertility of tropical soils QUEFTS. Geoderma 46:299318.Google Scholar
17 Groot, J.C.J., Oomen, G.J.M., and Rossing, W.A.H. 2012. Multi-objective optimization and design of farming systems. Agricultural Systems 110:6367.Google Scholar
18 Presidencia Municipal de Tecoanapa, Gro., Instituto de Investigación Científica Área Ciencias Naturales-UAG. 2001. Fertilidad de suelos agrícolas e hidrología del municipio de Tecoanapa, Guerrero. Universidad Autónoma de Guerrero-Instituto de Investigación Científica Área Ciencias Naturales, México. p. 20.Google Scholar
19 INEGI. 2011. Principales Resultados Del Censo De Población y Vivienda 2010, Guerrero. INEGI, México.Google Scholar
20 Renard, K.G., Foster, G.R., Weesies, G.A., McCool, D.K., and Yoder, D.C. 1997. Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE). Agriculture Handbook No. 703. United States Department of Agriculture, USA. p. 385.Google Scholar
21 SEMARNAT—UACH. 2002. Evaluación De La Pérdida De Suelo Por Erosión Hídrica Y Eólica En La República Mexicana, Escala 1: 1,000,000. SEMARNAT-UACH, México.Google Scholar
22 Hengsdijk, H. and van Ittersum, M.K. 2003. Formalizing agro-ecological engineering for future-oriented land use studies. European Journal of Agronomy 19:549562.Google Scholar
23 Mitra, S.P. and Shanker, H. 1957. Amelioration of alkali soil by chemicals in combination with organic-matter-like weeds. Soil Science 83:471474.Google Scholar
24 Burgess, M.S., Mehuys, G.R., and Madramooto, C.A. 2002. Nitrogen dynamics of decomposing corn residue components under three tillage systems. Soil Science Society of America Journal 66:13501358.Google Scholar
25 Colunga, G.B., Arriaga-Jordán, C.M., Velázquez Beltran, C.M., González-Ronquillo, L., Smith, M., Estrada-Flores, D.G., Rayas-Amor, J.A., and Castelán-Ortega, O.A. 2005. Participatory study on feeding strategies for working donkeys used by campesino farmers in the highlands of central Mexico. Tropical Animal Health and Production 37:143157.Google Scholar
26 Harrington, K.C., Thatcher, A., and Kemp, P.D. 2006. Mineral composition and nutritive value of some common pasture weeds. New Zealand Plant Protection 59:261265.Google Scholar
27 Ríos, P.A., Toledo, M.C., and Bartra, V.A. 2009. Construyendo el desarrollo rural integral y sustentable en Guerrero. Volumen II. La conversión del programa de subsidio al fertilizante. Gobierno del Estado de Guerrero, Secretaría de Desarrollo Rural, FAO, México. p. 136.Google Scholar
28 Gómez, M.N.O., González, C.M., Manjarrez, S.M., Murillo, N.P., and Cruzaley, S.R. 2007. Manual para producir maíz en el estado de Guerrero. Folleto para productores No. 15. SAGARPA-INIFAP, México. p. 40.Google Scholar
29 Navarro, G.S., Cruzaley, S.R., Reyes, J.M., Noriega, C.D.H., and Miranda, S.F. 2002. Nueva alternativa tecnológica para producir maíz–jamaica en áreas potenciales de Guerrero. Folleto para productores No. 11. Área Agrícola. SAGARPA–INIFAP, México. p. 16.Google Scholar
30 van Ittersum, M.K. and Rabbinge, R. 1997. Concepts in production ecology for analysis and quantification of agricultural input-output combinations. Field Crops Research 52:197208.Google Scholar
31 SIACON (Sistema de Información Agroalimentaria de Consulta). 2012. Anuario agropecuario 2003. Available at Web site http://www.siap.gob.mx/index.php?option=com_content&view=article&id=44&Itemid=378 (accessed April 11, 2014).Google Scholar
32 SNIIM (Sistema Nacional de Información e Integración de Mercados). 2003. Anuario estadístico 2003. Available at Web site http://www.economia-sniim.gob.mx/nuevo/ (accessed April 11, 2014).Google Scholar
33 National Research Council (NRC). 1981. Nutrient Requirements of Goats: Angora, Dairy, and Meat Goats in Temperate and Tropical Countries. The National Academy Press, Washington, DC. p. 91.Google Scholar
34 National Research Council (NRC). 2001. Nutrients Requirements of Dairy Cattle. National Academy of Sciences, USA. p. 381.Google Scholar
35 Douxchamps, S. 2010. Integration of Canavalia brasiliensis into the crop–livestock system of the Nicaraguan hillsides: Environmental adaptation and nitrogen dynamics. PhD dissertation, ETH, Zurich. p. 126.Google Scholar
36 Martínez, V.G., Palacios, F.J.A., Bustamante, G.J.J., Ríos, U.A., Vega, M.V.E., and Montaño, B.M. 2010. Composición de leche de vacas criollo, Guzerat y sus cruzas F1 y su relación con el peso al destete de las crías. Revista Mexicana de Ciencias Pecuarias 1:311324.Google Scholar
37 CONEVAL. 2012. Líneas de bienestar y canasta básica 2003. Available at Web site http://www.coneval.gob.mx/cmsconeval/rw/pages/medicion/Pobreza_2010/Lineas_de_bienestar_07022012.es.do (accessed April 11, 2014).Google Scholar
38 Rodríguez, J. 1993. La Fertilidad De Los Cultivos, Un Método Racional. Facultad de Agronomía P.U.C., Chile. p. 208.Google Scholar
39 Yang, H.S. and Janssen, B.H. 2000. A mono-component model of carbon mineralization with a dynamic rate constant. European Journal of Soil Science 51:517529.Google Scholar
40 Grace, P.R., Jain, M.C., and Harrington, L.W. 2002. Environmental concerns in rice-wheat system. In Proceedings of the International Workshop on Developing Action Program for Farm level Impact in Rice-Wheat system of the Indo-Gangetic Plains, 25–27 September 2000 at New Delhi, India. Rice-Wheat Consortium paper series 14, Rice-Wheat Consortium for the Indo-Gangetic Plains, New Delhi, India.Google Scholar
41 Foresight. 2011. The Future of Food and Farming: Challenges and Choices for Global Sustainability. Government Office for Science, London, UK. p. 44.Google Scholar
42 Mulder, I. 2000. Soil Fertility: QUEFTS and farmers’ perceptions. Working paper No. 30. International Institute for Environment and Development, London, and Institute for Environmental Studies, Amsterdam. p. 60.Google Scholar
43 Mann, L., Tolbert, V., and Cushman, J. 2002. Potential environmental effects of corn (Zea mays L.) stover removal with emphasis on soil OM and erosion. Agriculture, Ecosystems and Environment 89:149166.Google Scholar
44 Lal, R. 2005. World crop residues production and implications of its use as a biofuel. Environment International 31:575584.Google Scholar
45 Chivenge, P.P., Murwira, H.K., Giller, K.E., Mapfumo, P., and Six, J. 2007. Long-term impact of reduced tillage and residue management on soil carbon stabilization: Implications for conservation agriculture on contrasting soils. Soil and Tillage Research 94:328337.Google Scholar
46 Mendez, L.M. 2012. Programa de fertilizante subsidiado en Guerrero, transparencia y rendición de cuentas. Mexican Rural Development Research Reports. Woodrow Wilson International Center for Scholars, Washington DC. p. 82.Google Scholar
47 McDermott, J.J., Randolph, T.F., and Staal, S.J. 1999. The economics of optimal health and productivity in smallholder livestock systems in developing countries. OIE Revue Scientifique et Technique 18:399424.Google Scholar
48 Randolph, T.F., Schelling, E.S., Grace, D., Nicholson, C.F., Leroy, J.L., Cole, D.C., Demment, A., Omore, A., Zinsstag, J., and Ruel, M. 2007. Role of livestock in human nutrition and health for poverty reduction in developing countries. Journal of Animal Science 85:27882800.Google Scholar
49 Thornton, P.K. 2010. Livestock production: Recent trends, future prospects. Philosophical Transactions of the Royal Society B, Biological Sciences 365:28532867.Google Scholar
50 Pica-Ciamarra, U., Tasciotti, L., Otte, J., and Zezza, A. 2011. Livestock Assets, Livestock Income and Rural Households: Cross-Country Evidence from Household Surveys. ESA Working No. 11-17. FAO, Rome. p. 28.Google Scholar
51 McDermott, J.J., Staal, S.J., Freeman, H.A., Herrero, M., and van de Steeg, J.A. 2010. Sustaining intensification of smallholder livestock systems in the tropics. Livestock Science 130:95109.CrossRefGoogle Scholar
52 Rufino, M.C., Rowe, E.C., Delve, R.J., and Giller, K.E. 2006. Nitrogen cycling efficiencies through resource-poor African crop–livestock systems. Agriculture, Ecosystems and Environment 112:261282.Google Scholar
53 Hellin, J., Groenewald, S., and Keleman, A. 2012. Impact pathways of trade liberalization on rural livelihoods: A case study of smallholder maize farmers in Mexico. Iberoamerican Journal of Development Studies 1:5983.Google Scholar
54 García-Barrios, R. and García-Barrios, L. 1990. Environmental and technological degradation in peasant agriculture: A consequence of development in Mexico. World Development 18:156915850.Google Scholar
55 Hellin, J. 2012. Agricultural extension, collective action and innovation systems: Lessons on network brokering from Peru and Mexico. The Journal of Agricultural Education and Extension 18:141159.Google Scholar
56 IPCC. 2007. Climate change 2007: Synthesis report. Contribution of working groups I, II and III to the fourth assessment report of the intergovernmental Panel on Climate Change. In Pachauri, R.K. and Reisinger, A. (eds). Core Writing Team. IPCC, Geneva, Switzerland. p. 104.Google Scholar
57 González-Rojas, K., García-Salazar, J.A., Matus-Gardea, J.A., and Martínez-Saldaña, T. 2011. Vulnerabilidad del mercado nacional de maíz (Zea mays L.) ante cambios exogenous internacionales. Agrociencia 45:733744.Google Scholar
58 OEIDRUS. 2011. Atlas del estado de Guerrero. Secretaría de Desarrollo Rural de Guerrero. Available at Web site http://www.campoguerrero.gob.mx/publica/ (accessed April 11, 2014).Google Scholar