Skip to main content Accessibility help
×
Home

Water spreading weirs altering flood, nutrient distribution and crop productivity in upstream–downstream settings in dry lowlands of Afar, Ethiopia

  • Mezegebu Getnet (a1), Tilahun Amede (a1), Gebeyaw Tilahun (a2), Gizachew Legesse (a1), Murali Krishna Gumma (a1), Hunegnaw Abebe (a3), Tadesse Gashaw (a1), Christina Ketter (a4) and Elisabeth V. Akker (a4)...

Abstract

Afar in Ethiopia is a drought prone area characterized by low rainfall, high temperature and suffering from flash flood emerging from adjacent mountains. We introduced a flood barrier, water spreading weirs (WSWs) in 2015 to convert floods to a productive use and assessed its effect in 2016 and 2017. WSWs resulted in deposition of sediments where sand deposition was higher in the upside of upstream weir whereas silt and clay deposition was prominent at the central location between the two weirs. There was a moisture gradient across farming fields with volumetric water content (VWC) at 20 cm depth varying between 10 and 22% depending on the relative position/distance of fields from the WSWs, consequently, effecting significant difference in yield between fields. There was a positive relationship between VWC made available by WSWs at planting and the yield (P < 0.001, r = 0.76) and biomass productivity (P < 0.005, r = 0.46). WSWs created differing farming zone following soil moisture regime, affecting grain and biomass yield. In good potential zones with high moisture content, the WSW-based farming enabled to produce up to 5 and 15 t ha−1 yr−1 of maize grain and biomass, respectively, while in low potential zones there was a complete crop grain failure. The system enabled pastoralists to produce huge amount of biomass and grain during Belg (short) and Meher (long) growing seasons that was stored and utilized during succeeding dry periods. Furthermore, the practice ensured a visible recovery of degraded rangelands. This was evident from the filling up of the riverbed as well as the two WSW wings with 1 m high and about 450 m length each with fertile sediment from Belg and Meher seasons of 2016 and 2017. Hence, future studies should analyze the sustainability and the potential of flood-based development at large scale.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Water spreading weirs altering flood, nutrient distribution and crop productivity in upstream–downstream settings in dry lowlands of Afar, Ethiopia
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Water spreading weirs altering flood, nutrient distribution and crop productivity in upstream–downstream settings in dry lowlands of Afar, Ethiopia
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Water spreading weirs altering flood, nutrient distribution and crop productivity in upstream–downstream settings in dry lowlands of Afar, Ethiopia
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Author for correspondence: Mezegebu Getnet, E-mail: m.getnet@cgiar.org, mezegebu.debas@gmail.com

References

Hide All
Abegaz, A, Winowiecki, LA, Vågen, T-G, Langan, S and Smith, JU (2016) Spatial and temporal dynamics of soil organic carbon in landscapes of the upper blue Nile basin of the Ethiopian highlands. Agriculture, Ecosystems & Environment 218, 190208.
Ackermann, K, Nill, D, Alexander, S, Anneke, T, Akker, EVD, Wegner, M and Tobias, G (2014) Water and soil conservation practices in the Sahel: an analysis of their potential to increase resilience of rural livelihoods. GRF Davos Planet@Risk 2, 1420.
Akker, EVD, Berdel, W and Murele, JN (2015) Reversing natural degradation into resilience: The Afar case Conference on International Research on Food Security, Natural Resource Management and Rural Development Tropentag 2015, Berlin, Germany.
Alemayehu, K, Sheleme, B and Schoenau, J (2016) Characterization of problem soils in and around the south central Ethiopian rift valley. Journal of Soil Science and Environmental Management 7, 191203.
Amare, T, Terefe, A, Selassie, YG, Yitaferu, B, Wolfgramm, B and Hurni, H (2013) Soil properties and crop yields along the terraces and toposequece of anjeni watershed, central highlands of Ethiopia. Journal of Agricultural Science 5, 134144.
Amede, T, Kassa, H, Zeleke, G, Shiferaw, A, Kismu, S and Teshome, M (2007) Working with communities and building local institutions for sustainable land management in the Ethiopian highlands. Mountain Research and Development 27, 1520.
Assen, MM and Ashebo, T (2018) Agro-pastorals’ adoption of soil and water conservation (SWC) technologies: the case of Aba'ala district in Afar region, Ethiopia. International Journal of Biodiversity and Conservation 10, 303318.
Belay, K, Beyene, F and Manig, W (2005) Coping with drought among pastoral and agro-pastoral communities in eastern Ethiopia. Journal of Rural Development 28, 185210.
Beyene, F (2015) Determinants of food security under changing land-use systems among pastoral and agro-pastoral households in eastern Ethiopia. Environment, Development and Sustainability 17, 11631182.
Bouyoucos, GJ (1962) Hydrometer method improved for making particle size analyses of soils. Agronomy Journal 54, 464465.
Brown, ME, Funk, C, Pedreros, D, Korecha, D, Lemma, M, Rowland, J, Williams, E and Verdin, J (2017) A climate trend analysis of Ethiopia: examining subseasonal climate impacts on crops and pasture conditions. Climate Change 142, 169182.
Castelli, G, Bresci, E, Castelli, F, Hagos, EY and Mehari, A (2018) A participatory design approach for modernization of spate irrigation systems. Agricultural Water Management 210, 286295.
Deressa, T, Hassan, RM and Ringler, C (2008) Measuring Ethiopian Farmers' Vulnerability to Climate Change Across Regional. IFPRI, Washington, D.C.
Elledge, A and Thornton, C (2017) Effect of changing land use from virgin brigalow (acacia Harpophylla) woodland to a crop or pasture system on sediment, nitrogen and phosphorus in runoff over 25 years in subtropical Australia. Agriculture, Ecosystems & Environment 239, 119131.
Erkossa, T, Hagos, F and Lefore, N (eds.) (2013) Flood-based Farming for Food Security and Adaption to Climate Change in Ethiopia: Potential and Challenges, October 30–31, 2013. Adama, Ethiopia: International Water Management Institute (IWMI). Colombo, Sri Lanka, p. 170.
FAO (1991) Water harvesting. In Critchley, W and Siegert, K (eds.), A Manual for the Design and Construction of Water Harvesting Schemes for Plant Production. Rome: Food and Agriculture Organization of the United Nations, p. 154.
Faraway, JJ (2005) Texts in statistical science. In Chatfield, C, Tanner, M and Zidek, J (eds.), Linear Model with R. Boca Raton London New York Washington, DC: Chapman & Hall/CRC, pp 255.
Fazzini, M, Bisci, C and Billi, P (2015) The climate of Ethiopia, In Billi, P (ed.) Landscapes and Landforms of Ethiopia. World Geomorphological Landscapes. Springer, Dordrecht, pp. 6587.
Fitzjohn, C, Lternan, J and Gwilliams, A (1998) Soil moisture variability in a semi-arid gully catchment: implications for runoff and erosion control. CATENA 32, 5570.
Gebremeskel, K (2006) Rangeland potential, quality and restoration strategies in north-eastern Ethiopia: a case study conducted in the southern afar region. Doctor of Philosophy University of Stellenbosch, p. 246.
Gebreyes, M, Tesfaye, K and Feleke, B (2017) Climate change adaptation disaster risk reduction nexus: case study from Ethiopia. International Journal of Climate Change Strategies and Management 9, 829845.
GIZ (2012). Water-spreading Weirs for the Development of Degraded dry River Valleys: Experience from the Sahel. GIZ, Bonn and Eschborn, Germany. Available at https://www.Giz.De/fachexpertise/downloads/giz2013-en-water-spreading-weirs.Pdf.
Gumma, MK, Amede, T, Getnet, M, Pinjarla, B, Panjala, P, Legesse, G, Tilahun, G, Akker, EVD, Berdel, W, Keller, C, Siambi, M and Anthony, W (2019) Assessing potential locations for flood-based farming using satellite imagery: a case study in Afar region, Ethiopia. Renewable Agriculture and Food Systems, this volume.
Haileslassie, A, Priess, J, Veldkamp, E, Teketay, D and Peterlesschen, J (2005) Assessment of soil nutrient depletion and its spatial variability on smallholders’ mixed farming systems in Ethiopia using partial versus full nutrient balances. Agriculture, Ecosystems & Environment 108, 116.
Ham, J-PVD (2008) Dodota Spate Irrigation System Ethiopia: A Case Study of Spate Irrigation Management and Livelihood Options (MSc). Wageningen University and Research.
Haregeweyn, N, Tsunekawa, A, Tsubo, M, Meshesha, D and Melkie, A (2013) Analysis of the invasion rate, impacts and control measures of Prosopis juliflora: a case study of Amibara district, eastern Ethiopia. Environmental monitoring and Assessment 185, 75277542.
Hiben, MG and Embaye, TG (2013) Spate irrigation in Tigray: The challenges and suggested ways to overcome them. In Erkossa, T, Hagos, F & Lefore, N (eds), Flood-Based Farming for Food Security and Adaptation to Climate Change in Ethiopia: Potential for Challenges, October 30–31, 2013 Adama, Ethiopia. IWMI, Colombo, Sri Lanka, p. 170.
Hundie, B (2010) Conflicts between Afar pastoralists and their neighbors: triggers and motivations. International Journal of Conflict and Violence 4, 134148.
Ketter, C and Amede, T (2017). Enhancing resilience of communities in pastoral and agro-pastoral systems by using water-spreading weirs as a rainwater management strategy (example Ethiopia). Future Agriculture: Social-ecological transitions and bio-cultural shifts. Bonn, Germany.
Kirk, PL (1950) Kjeldahl method for total nitrogen. Analytical Chemistry 22, 354358.
Kister, HZ (1992) Distillation Design, 1st edn. McGraw-Hill, New York, USA, p. 710.
Komakech, HC, Mul, ML, Zaag, PVD and Rwehumbiza, FBR (2011) Water allocation and management in an emerging spate irrigation system in Makanya catchment, Tanzania. Agricultural Water Management 98, 1719–1726.
Laekemariam, F, Kibret, K, Mamo, T and Gebrekidan, H (2016) Soil–plant nutrient status and their relations in maize-growing fields of wolaita zone, southern Ethiopia. Communications in Soil Science and Plant Analysis 47, 13431356.
Mamo, T, Richter, C and Heiligtag, B (2002) Phosphorus availability studies on ten Ethiopian vertisols. Journal of Agriculture and Rural Development in the Tropics and Subtropics 103, 177183.
Mehari, ZH (2015) The invasion of Prosopis juliflora and Afar pastoral livelihoods in the middle awash area of Ethiopia. Ecological Processes 4, 19.
Mehari, A, Schultz, B and Depeweg, H (2005) Where indigenous water management practices overcome failures of structures: the Wadi Laba spate irrigation system in Eritrea. Irrigation and Drainage 54, 114.
Mesbah, SH, Mohammadnia, M and Kowsar, SA (2016) Long-term improvement of agricultural vegetation by floodwater spreading in the Gareh Bygone plain, Iran. In the pursuit of human security, is artificial recharge of groundwater more lucrative than selling oil? Hydrogeology Journal 24, 303317.
Meze-Hausken, E (2004) Contrasting climate variability and meteorological drought with perceived drought and climate change in Northern Ethiopia. Climate Research 27, 1931.
Nill, D, Ackermann, K, Van Den Akker, E, Schöning, A, Wegner, M, Van Der Schaaf, C and Pieterse, J (2012) Water-spreading Weirs for the Development of Degraded dry River Valleys: Experience from the Sahel. WOCAT, Bonn and Eschborn, Germany. Available at https://wocatpedia.Net/wiki/.
Raes, D, Gabriels, D, Kowsar, SA, Corens, P and Esmaeili, N (2008) Modeling the effect of floodwater spreading systems on the soil–water balance and crop production in the Gareh Bygone plain of Southern Iran. In Lee, C and Schaaf, T (eds.), The Future of Drylands. Dordrecht: Springer, pp. 243254.
Rogers, P, Nunan, F and Fentie, AA (2017) Reimagining invasions: the social and cultural impacts of prosopis on pastoralists in southern Afar, Ethiopia. Pastoralism 7, 113.
Ruane, AC, Goldberg, R and Chryssanthacopoulos, J (2015) Agmip climate forcing datasets for agricultural modeling: merged products for gap-filling and historical climate series estimation. Agriculture and Forest Meteorology 200, 233248
Schmidt, M and Pearson, O (2016) Pastoral livelihoods under pressure: ecological, political and socioeconomic transitions in Afar (Ethiopia). Journal of Arid Environments 124, 2230.
Schöning, A, Akker, EVD, Wegner, M and Ackermann, K (2012) Water-spreading weirs: Improving resilience in dry areas. Available at http://www.tropentag.de/2012/abstracts/posters/714.pdf.
Schroder, J, Zhang, H, Richards, JR and Payton, ME (2009) Interlaboratory validation of the Mehlich 3 method as a universal extractant for plant nutrients. Journal of AOAC International 92, 9951008.
Seid, N, Reda, GK, Mohammed, S, Bedru, S, Ebrahim, K, Teshale, T and Demelash, N (2016) Socio-economic, Agro-Ecological and Technical Potential of the Proposed Ascoma Spate Irrigation Project: Ada'ar Woreda, Afar National Regional State, Ethiopia. USAID, Feed the Future, Addis Ababa, Ethiopia.
Sonneveld, BGJS, Pande, S, Georgis, K, Keyzer, M, Seid Ali, AA and Takele, A (2010) Land degradation and overgrazing in the Afar region, Ethiopia: A spatial analysis. In Zdruli, P, Pagliai, M, Kapur, S and Cano, AF (eds.), Land Degradation and Desertification: Assessment, Mitigation and Remediation. Dordrecht: Springer, pp. 97109.
Steenbergen, F-V, Haile, AM, Alemehayu, T, Alamirew, T and Geleta, Y (2011) Status and potential of spate irrigation in Ethiopia. Water Resources Management 25, 18991913.
Tamene, L and Vlek, PL (2008) Soil erosion studies in Northern Ethiopia. In Land use and Soil Resources, pp. 73100. Springer, The Netherlands.
Tesfai, M and Graaff, JD (2000) Participatory rural appraisal of spate irrigation systems in eastern Eritrea. Agriculture and Human Values 17, 359370.
Tesfai, M and Sterk, G (2002) Sedimentation rate on spate irrigated fields in Sheeb area, Eastern Eritrea. Journal of Arid Environments 50, 191203.
Tesfai, M and Stroosnijder, L (2001) The Eritrean spate irrigation system. Agricultural Water Management 48, 5160.
Tilahun, M, Angassa, A, Abebe, A and Mengistu, A (2016) Perception and attitude of pastoralists on the use and conservation of rangeland resources in Afar region, Ethiopia. Ecological Processes 5, 18.
Tsegaye, D (2010) Land-use/cover dynamics in northern Afar rangelands, Ethiopia. Agriculture, Ecosystems and Environment 139, 174180.
Walkley, A and Black, IA (1934) An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Science 37, 2938.

Keywords

Water spreading weirs altering flood, nutrient distribution and crop productivity in upstream–downstream settings in dry lowlands of Afar, Ethiopia

  • Mezegebu Getnet (a1), Tilahun Amede (a1), Gebeyaw Tilahun (a2), Gizachew Legesse (a1), Murali Krishna Gumma (a1), Hunegnaw Abebe (a3), Tadesse Gashaw (a1), Christina Ketter (a4) and Elisabeth V. Akker (a4)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.