Skip to main content
×
Home
    • Aa
    • Aa

Is it worth learning differential geometric methods for modeling and control of mechanical systems?

  • Andrew D. Lewis (a1)
Abstract
SUMMARY

Evidence is presented to indicate that the answer is, “Yes, sometimes.”

Copyright
Corresponding author
*E-mail: andrew@mast.queensu.ca
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

1.H. Arai , K. Tanie and N. Shiroma , “Nonholonomic control of a three-DOF planar underactuated manipulator,” IEEE Trans. Robotics Autom. 14 (5), 681695 (1998).

2.D. R. Auckly and L. V. Kapitanski , “On the λ-equations for matching control laws,” SIAM J. Control Optim. 41 (5), 13721388 (2002).

3.S. P. Bhat and D. S. Bernstein , “A topological obstruction to continuous global stabilization of rotational motion and the unwinding phenomenon,” Syst. Control Lett. 39, 6370 (2000).

4.A. M. Bloch , Nonholonomic Mechanics and Control of Interdisciplinary Applied Mathematics 24 (Springer-Verlag, New York-Heidelberg-Berlin, 2003).

5.A. M. Bloch , N. E. Leonard and J. E. Marsden , “Controlled Lagrangians and the stabilization of mechanical systems. I. The first matching theorem,” IEEE Trans. Autom. Control 45 (12), 22532270 (2000).

6.A. M. Bloch , D. E. Chang , N. E. Leonard and J. E. Marsden , “Controlled Lagrangians and the stabilization of mechanical systems. II. Potential shaping,” IEEE Trans. Autom. Control 46 (10), 15561571 (2001).

7.F. Bullo and A. D. Lewis , “Kinematic controllability and motion planning for the snakeboard,” IEEE Trans. Robot. Autom. 19 (3), 494498 (2003).

8.F. Bullo and A. D. Lewis , “Low-order controllability and kinematic reductions for affine connection control systems,” SIAM J. Control Optim. 44 (3), 885908 (2005).

10.F. Bullo and K. M. Lynch , “Kinematic controllability and decoupled trajectory planning for underactuated mechanical systems,” IEEE Trans. Robot. Autom. 17 (4), 402412 (2001).

11.F. Bullo and M. Žefran , “On mechanical systems with nonholonomic constraints and symmetries,” Syst. Control Lett. 45 (2), 133143 (2002).

12.M. Dalsmo and A. J. van der Schaft , “On representations and integrability of mathematical structures in energy-conserving physical systems,” SIAM J. Control Optim. 37 (1), 5491 (1998).

14.A. D. Lewis , “Simple mechanical control systems with constraints,” IEEE Trans. Autom. Control 45 (8), 14201436 (2000).

15.A. D. Lewis and R. M. Murray , “Controllability of simple mechanical control systems,” SIAM J. Control Optim. 35 (3), 766790 (1997).

18.K. M. Lynch , N. Shiroma , H. Arai and K. Tanie , “Collision-free trajectory planning for a 3-DOF robot with a passive joint,” Int. J. Robot Res. 19 (12), 11711184 (2000).

20.R. Ortega , M. W. Spong , F. Gómez-Estern and G. Blankenstein , “Stabilization of a class of underactuated mechanical systems via interconnection and damping assignment,” IEEE Trans. Autom. Control 47 (8), 12181233 (2002).

22.H. J. Sussmann , “A general theorem on local controllability,” SIAM J. Control Optim. 25 (1), 158194 (1987).

23.H. J. Sussmann and V. Jurdjevic , “Controllability of nonlinear systems,” J. Differential Equations 12, 95116 (1972).

24.M. Takegaki and S. Arimoto , “A new feedback method for dynamic control of manipulators,” Trans. ASME Ser. G J. Dynam. Syst. Meas. Control 103 (2), 119125 (1981).

26.A. J. van der Schaft , “Stabilization of Hamiltonian systems,” Nonlinear Anal. TMA 10 (10), 10211035 (1986).

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Robotica
  • ISSN: 0263-5747
  • EISSN: 1469-8668
  • URL: /core/journals/robotica
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×