Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-25T16:48:21.927Z Has data issue: false hasContentIssue false

Processes of time-averaging in the terrestrial vertebrate record

Published online by Cambridge University Press:  17 July 2017

Russell W. Graham*
Affiliation:
Research and Collections Center, Illinois State Museum, 1920 101/2 Street South, Springfield, IL 62703

Extract

The terrestrial vertebrate fossil record provides a window into the past evolution of taxa, communities, and ecosystems. It can also be used to reconstruct ancient environments, climates, and landscapes. Vertebrate fossils can document the evolution of humans and their interactions with fauna and environments. However, before the maximum potential of this record can be realized, it is essential to know the extent of temporal resolution, or time-averaging, represented by fossil samples.

Type
Research Article
Copyright
Copyright © 1993 Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahler, S. R., Bade, M. J., King, F. B., Styles, B. W., and Thorson, P. J. 1992. Late Archaic components at Modoc Rock Shelter, Randolph county, Illinois. Illinois State Museum Reports of Investigations, 48:1143.Google Scholar
Andrews, P., and Cook, J. 1985. Natural modifications to bones in a temperate setting. Man, 20:675691.Google Scholar
Armour-Chelu, M., and Andrews, P. 1991. Bone dispersal by earthworms. Proceedings of the Zoological Society of London, 63:301303.Google Scholar
Barnosky, E. A., 1992. A positive role for taphonomy and time-averaging as illustrated by mammalian fossils from Lamar Cave, Yellowstone National Park, WY. Abstracts with Programs, Rocky Mountain Section, Geological Society of America: 2.Google Scholar
Behrensmeyer, A. K. 1978. Taphonomic and ecological information from bone weathering. Paleobiology, 4:150162.Google Scholar
Behrensmeyer, A. K. 1982. Time resolution in fluvial vertebrate assemblages. Paleobiology, 8:211227.Google Scholar
Behrensmeyer, A. K. 1983. Patterns of natural bone distribution on recent land surfaces: implications for archeological site formation. British Archeological Series, 163:93106.Google Scholar
Behrensmeyer, A. K. 1988. Vertebrate preservation in fluvial channels. Palaeogeography, Palaeoclimatology, Palaeoecology, 63:183199.Google Scholar
Behrensmeyer, A. K. 1991. Terrestrial vertebrate accumulations, p. 291335. In Allison, P. A. and Briggs, D. E. G. (eds.), Taphonomy: Releasing the Data Locked in the Fossil Record. Plenum, New York.Google Scholar
Behrensmeyer, A. K., and Dechant Boaz, D. E. 1980. The recent bones of Amboseli Park, Kenya, in relation to East African paleoecology, p. 7292. In Behrensmeyer, A. K. and Hill, A. P. (eds.), Fossils in the Making. University of Chicago Press, Chicago.Google Scholar
Behrensmeyer, A. K., Western, D., and Dechant Boaz, D. E. 1979. New perspectives in vertebrate paleoecology from a recent bone assemblage. Paleobiology, 5:1221.Google Scholar
Behrensmeyer, A. K., and Hook, R. W. 1992. Paleoenvironmental contexts and taphonomic modes, p. 15136. In Behrensmeyer, A. K., Damuth, J. D., DiMichele, W. A., Potts, R., Sues, H.-D., and Wing, S. L., Terrestrial Ecosystems Through Time. University of Chicago Press, Chicago.Google Scholar
Bickhart, K. J. 1984. A field experiment in avian taphonomy. Journal of Vertebrate Paleontology, 4:525535.Google Scholar
Borrero, L. A. 1990. Taphonomy of guanaco bones in Tierra del Fuego. Quaternary Research, 34:361371.CrossRefGoogle Scholar
Butler, B. R. 1969. More information on the frozen ground features and further interpretation of the small mammals sequence at the Wasden site (Owl Cave), Bonneville county, Idaho. Tebiwa, 12:5863.Google Scholar
Elder, R. L., and Smith, G. R. 1988. Fish taphonomy and environmental inference in paleolimnology. Palaeogeography, Palaeoclimatology, Palaeoecology, 62:577592.Google Scholar
Emslie, S. D. 1988. Vertebrate paleontology and taphonomy of caves in the Grand Canyon, Arizona. National Geographic Research, 4:128142.Google Scholar
Emslie, S. D. 1992. Early humans in North America. Science, 256:426427.Google Scholar
Emslie, S. D., Euler, R. C., and Mead, J. I. 1987. A desert culture shrine in Grand Canyon, Arizona, and the role of split twig figurines. National Geographic Research, 4:511516.Google Scholar
Fiorillo, A. R. 1989. An experimental study of trampling: implications for the fossil record, p. 6172. In Bonnichsen, R. and Sorg, M. H. (eds.), Bone Modification. Center for the Study of the First Americans, University of Maine, Orono.Google Scholar
Gifford, D. P., and Behrensmeyer, A. K. 1977. Observed formation and burial of a recent human occupation site in Kenya. Quaternary Research, 8:245266.Google Scholar
Gifford-Gonzalez, D. P., Damrosch, D. B., Damrosch, D. R., Pryor, J., and Thunen, R. L. 1985. The third dimension in site structure: an experiment in trampling and vertical dispersal. American Antiquity, 50:803818.Google Scholar
Graham, R. W., Holman, J. A., and Parmalee, P. W. 1983. Taphonomy and paleoecology of the Christensen Bog mastodon bone bed, Hancock county, Indiana. Illinois State Museum Reports of Investigations, 38:129.Google Scholar
Hanson, C. B. 1980. Fluvial taphonomic processes: models and experiments, p. 156181. In Behrensmeyer, A. K. and Hill, A. P. (eds.), Fossils in the Making. University of Chicago Press, Chicago.Google Scholar
Haynes, G. 1991. Mammoths, Mastodonts, and Elephants - Biology, Behavior, and the Fossil Record. Cambridge University Press, Cambridge, 413 p.Google Scholar
Hill, A. P. 1979. Disarticulation and scattering of mammal skeletons. Paleobiology, 5:261274.Google Scholar
Hill, A. P. 1980. Early postmortem damage to the remains of some contemporary East African mammals, p. 131152. In Behrensmeyer, A. K. and Hill, A. P. (eds.), Fossils in the Making, University of Chicago Press, Chicago.Google Scholar
Hill, A. P., and Behrensmeyer, A. K. 1984. Disarticulation patterns of some modern East African mammals. Paleobiology, 10:366376.Google Scholar
Hofman, J. L., and Enloe, J. G. 1992. Piecing Together the Past: Applications of Refitting Studies in Archaeology. BAR International Series 578, Oxford, 315 p.Google Scholar
Johnson, D. L. 1989. Subsurface stone lines, stone zones, artifact-manuport layers, and biomantle produced by bioturbation via pocket gophers (Thomomys bottae). American Antiquity, 54:370389.Google Scholar
Johnson, D. L., and Hansen, K. L. 1974. The effects of frost-heaving on objects in soils. Plains Anthropologist, 19:8198.Google Scholar
Jones, J. K. Jr., Armstrong, D. M., Hoffmann, R. S., and Jones, C. 1983. Mammals of the Northern Great Plains. University of Nebraska Press, Lincoln, 375 p.Google Scholar
Kidwell, S. M., and Behrensmeyer, A. K. 1988. Overview: ecological and evolutionary implications of taphonomic processes. Palaeogeography, Palaeoclimatology, Palaeoecology, 63:113.Google Scholar
Levin, S. A. 1992. The problem of pattern and scale in ecology. Ecology, 73:19431967.Google Scholar
Lyman, R. L. 1984. Bone density and differential survivorship of fossil classes. Journal of Anthropological Archaeology, 3:259299.Google Scholar
Lyman, R. L., Houghton, L. E., and Chambers, A. L. 1992. The effect of structural density on marmot skeletal part representation in archaeological sites. Journal of Archaeological Science, 19:557573.CrossRefGoogle Scholar
Manning, E. 1990. The late early Miocene Sabine River. Transactions Gulf Coast Association of Geological Societies, 40:531549.Google Scholar
Marcus, L. F., and Berger, R. 1984. The significance of radiocarbon dates for Rancho La Brea, p. 159183. In Martin, P. S. and Klein, R. G. (eds.), Quaternary Extinctions - A Prehistoric Revolution. University of Arizona Press, Tucson.Google Scholar
McBrearty, S. 1990. Consider the humble termite: termites as agents of post-depositional disturbance at African archaeological sites. Journal of Archaeological Science, 17:111143.CrossRefGoogle Scholar
McGrew, P. O. 1975. Taphonomy of Eocene fish from Fossil Basin, Wyoming. Fieldiana Geology 33:257270.Google Scholar
Mead, J. I., and Agenbroad, L. D. 1992. Isotope dating of Pleistocene dung deposits from the Colorado Plateau, Arizona and Utah. Radiocarbon, 34:119.Google Scholar
Mech, L. D., and Packard, J. M. 1990. Possible use of wolf, Canis lupus, den over several centuries. The Canadian Field Naturalist, 104:484485.Google Scholar
Moeyerson, J. 1978. The behaviour of stones and stone implements, buried in consolidating and creeping Kalahari sands. Earth Surface Processes, 3:115128.Google Scholar
Morlan, R. E., Nelson, D. E., Brown, T. A., Vogel, J. S., and Southon, J.R. 1990. Accelerator Mass Spectrometry dates on bones from Old Crow Basin, Northern Yukon Territory. Canadian Journal of Archaeology, 14:7592.Google Scholar
Nelson, D. E., Morlan, R. E., Vogel, J. S., Southon, J. R., and Harington, C. R. 1986. New dates on northern Yukon artifacts: Holocene not upper Pleistocene. Science, 232:749751.Google Scholar
Noe-Nygaard, N., and Larsen, P. H. 1990. Dating of weathering stages, disintegration patterns and onthogenetic age distribution on muskox skeleton in semi-arid east Greenland. Abstracts of the Sixth International Conference International Council for Archaeozoology, p.111.Google Scholar
Nowak, R. M., and Paradiso, J. 1983. Walker's Mammals of the World. The Johns Hopkins University Press, Baltimore, Volumes I and II, 1362 p.Google Scholar
Oliver, J. S. 1989. Analogues and site context: bone damages from Shield Trap Cave (24CB91), Carbon county, Montana, U.S.A., p. 7398. In Bonnichsen, R. and Sorg, M. H. (eds.), Bone Modification. Center for the Study of the First Americans, University of Maine, Orono.Google Scholar
Oliver, J. S., and Graham, R. W. in press. A catastrophic kill of ice-trapped coots: time-averaged and scavenger specific disarticulation patterns. Paleobiology.Google Scholar
Olsen, S. L., and Shipman, P. 1988. Surface modification on bone: trampling versus butchery. Journal of Archaeological Science, 15:535553.Google Scholar
Penick, J. L. Jr. 1981. The New Madrid Earthquakes. University of Missouri Press, Columbia, 176 p.Google Scholar
Rigby, J. K. Jr., Newman, K. R., Smit, J., Van Der Kaars, S., Sloan, R. E., and Rigby, J. K. 1988. Dinosaurs from the Paleocene part of the Hell Creek Formation, McCone county, Montana. Palaios 2:296302.CrossRefGoogle Scholar
Rogers, R. R. 1992. Non-marine borings in dinosaur bones from the Upper Cretaceous Two Medicine Formation, northwestern Montana. Journal of Vertebrate Paleontology, 12:528531.Google Scholar
Saunders, J. J. 1988. Fossiliferous spring sites in southwestern Missouri, p. 127149. In Laub, R. S., Miller, N. G., and Steadman, D. W. (eds.), Late Pleistocene and Early Holocene Paleoecology and Archeology of the Eastern Great Lakes Region, Bulletin of the Buffalo Society of Natural History, 33.Google Scholar
Schaetzl, R. J., Johnson, D. L., Burns, S. F., and Small, T. W. 1989. Tree uprooting: review of terminology, process, and environmental implications. Canadian Journal of Forestry Research, 19:19.Google Scholar
Sheets, R. G., Linder, R. L., and Dahlgren, R. B. 1971. Burrow systems of prairie dogs in South Dakota. Journal of Mammalogy, 52:451453.Google Scholar
Shipman, P., and Walker, A. 1980. Bone collecting in harvesting ants. Paleobiology, 6:496502.Google Scholar
Shumski, P. A. 1964. Ground (subsurface) ice. National Research Council of Canada, Technical Translation, 1130:1118.Google Scholar
Smith, G. R., Stearley, R. F., and Badgley, C. E. 1988. Taphonomic bias in fish diversity from Cenozoic floodplain environments. Palaeogeography, Palaeoclimatology, Palaeoecology, 63:263273.Google Scholar
Stockton, E. D. 1973. Shaw's Creek Shelter: human displacement of artefacts and its significance. Mankind, 9:112117.Google Scholar
Thorp, J. 1949. Effects of certain animals that live in the soil. Science Monthly, 68:180191.Google Scholar
Tooley, M. J., Rackham, D. J., and Simmons, I. G. 1982. A red deer (Cervus elaphus L.) skeleton from Seamer Carrs, Cleveland, England: provenance of the skeleton and palaeoecology of the site. Journal of Archaeological Science, 6:365376.Google Scholar
Turnbull, W. D. 1959. Ant colony assists fossil collectors in Wyoming. Bulletin Chicago Natural History Museum, 30:67.Google Scholar
Villa, P., and Courtin, J. 1983. The interpretation of stratified sites: a view from underground. Journal of Archaeological Science, 10,267281.Google Scholar
Voorhies, M. R. 1969. Taphonomy and population dynamics of an early Pliocene vertebrate fauna, Knox county, Nebraska. University of Wyoming Contributions to Geology Special Paper, 1:169.Google Scholar
Walker, D. N. 1987. Late Pleistocene/Holocene environmental changes in Wyoming: the mammalian record, p. 334392. In Graham, R. W., Semken, H. A. Jr., and Graham, M. A. (eds.), Late Quaternary Mammalian Biogeography and Environments of the Great Plains and Prairies, Illinois State Museum Scientific Papers, 22.Google Scholar
Washburn, A. L. 1973. Periglacial Processes and Environments. Arnold, London, 320 p.Google Scholar
Wiant, M. D., Hajic, E. R., and Styles, T. R. 1983. Napoleon Hollow and Koster site stratigraphy: implications for Holocene landscape evolution and studies of Archaic Period settlement patterns in the lower Illinois River valley, p. 147164. In Phillips, J. L. and Brown, J. A. (eds.), Archaic Hunters and Gatherers in the American Midwest. Academic Press, New York.Google Scholar
Wilson, M. V. H. 1988. Reconstruction of ancient lake environments using both autochthonous and allochthonous fossils. Palaeogeography, Palaeoclimatology, Palaeoecology, 62:609623.Google Scholar
Wood, W. R., and Johnson, D. L. 1978. A survey of disturbance processes in archaeological site formation. Advances in Archaeological Method and Theory, 1:315381.Google Scholar
Woodard, G. D., and Marcus, L. F. 1973. Rancho La Brea fossil deposits: a re-evaluation from stratigraphic and geological evidence. Journal of Paleontology, 47:5469.Google Scholar