Skip to main content
×
Home
    • Aa
    • Aa

Dynamic Criteria: a Longitudinal Analysis of Professional Basketball Players' Outcomes

  • Antonio León García-Izquierdo (a1), Pedro José Ramos-Villagrasa (a1) and José Navarro (a2)
Abstract

This paper describes the fluctuations of temporal criteria dynamics in the context of professional sport. Specifically, we try to verify the underlying deterministic patterns in the outcomes of professional basketball players. We use a longitudinal approach based on the analysis of the outcomes of 94 basketball players over ten years, covering practically players' entire career development. Time series were analyzed with techniques derived from nonlinear dynamical systems theory. These techniques analyze the underlying patterns in outcomes without previous shape assumptions (linear or nonlinear). These techniques are capable of detecting an intermediate situation between randomness and determinism, called chaos. So they are very useful for the study of dynamic criteria in organizations. We have found most players (88.30%) have a deterministic pattern in their outcomes, and most cases are chaotic (81.92%). Players with chaotic patterns have higher outcomes than players with linear patterns. Moreover, players with power forward and center positions achieve better results than other players. The high number of chaotic patterns found suggests caution when appraising individual outcomes, when coaches try to find the appropriate combination of players to design a competitive team, and other personnel decisions. Management efforts must be made to assume this uncertainty.

En este artículo describimos las fluctuaciones en el tiempo del rendimiento de jugadores profesionales de baloncesto buscando patrones deterministas y de qué tipo son. Para ello, analizamos los resultados de 94 jugadores profesionales mediante un estudio longitudinal de series temporales de diez años de duración. Analizamos las series temporales utilizando las técnicas que se proponen desde la teoría de sistemas dinámicos no lineales. Mediante estas técnicas podemos descubrir los patrones subyacentes de los resultados sin tener que realizar asunciones previas sobre la linealidad o no linealidad de los datos, ni transformaciones de los mismos para que se ajusten a priori a una distribución. En los resultados encontrados, la mayoría de los jugadores muestran un patrón determinista (88.30%), de los cuales la mayoría son caóticos (81.92%) que obtienen mejores resultados que los lineales. El alto número de patrones caóticos encontrados parece indicar que debemos ser precavidos a la hora de evaluar y tomar decisiones sobre el rendimiento de los jugadores, y que la gestión de equipos debe asumir que la incertidumbre es una parte importante en este contexto.

Copyright
Corresponding author
Correspondence concerning this article should be addressed to Antonio León García- Izquierdo. Área de Psicología Social, Universidad de Oviedo. Plaza Feijóo, s/n, 33003 – Oviedo (Spain). Phone: +34-985104164. E-mail: angarcia@uniovi.es
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

J. T. Austin , & P. Villanova (1992). The criterion problem: 1917-1992. Journal of Applied Psychology, 77, 836874. http://dx.doi.org/10.1037/0021-9010.77.6.836

C. M. Barnes , & F. P. Morgeson (2007). Typical performance, maximal performance, and performance variability: Expanding our understanding of how organizations value performance. Human Performance, 20, 259274. http://dx.doi.org/10.1080/08959280701333289

G. V. Barrett , M. S. Caldwel , & R. A. Alexander (1985). The concept of dynamic criteria: A critical reanalysis. Personnel Psychology, 38, 4156. http://dx.doi.org/10.1111/j.1744-6570.1985.tb00540.x

D. J. Beal , H. M. Weiss , E. Barros , & S. M. MacDermid (2005). An episodic process model of affective influences on performance. Journal of Applied Psychology, 90, 10541068. http://dx.doi.org/10.1037/0021-9010.90.6.1054

L. Ceja , & J. Navarro (2009). Dynamics of flow: A nonlinear perspective. Journal of Happiness Studies, 10, 665684. http://dx.doi.org/10.1007/s10902-008-9113-6

L. Ceja , & J. Navarro (2011). Dynamic patterns of flow in the workplace: Characterizing within-individual variability using a complexity science approach. Journal of Organizational Behavior, 32, 627651. http://dx.doi.org/10.1002/job.747

D. Chan (2005). Current directions in personnel selection research. Current Directions in Psychological Science, 14, 220223. http://dx.doi.org/10.1111/j.0963-7214.2005.00368.x

Y. T. Cheng , & A. H. Van de Ven (1996). Learning the innovation journey: Order out of chaos. Organization Science, 7, 593614. http://dx.doi.org/10.1287/orsc.7.6.593

W. W. Cooper , J. L. Ruiz , & I. Sirvent (2009). Selecting non-zero weights to evaluate effectiveness of basketball players with DEA. European Journal of Operational Research, 195, 563574. http://dx.doi.org/10.1016/j.ejor.2008.02.012

J. Côté (1999). The influence of the family in the development of talent in sport. Sport Psychologist, 13, 395417.

D. V. Day , H. P. Sin , & T. T. Chen (2004). Assessing the burdens of leadership: Effects of formal leadership roles on individual performance over time. Personnel Psychology, 57, 573605. http://dx.doi.org/10.1111/j.1744-6570.2004.00001.x

D. L. Deadrick , N. Bennett , & C. J. Russell (1997). Using hierarchical linear modeling to examine dynamic performance criteria over time. Journal of Management, 23, 745757. http://dx.doi.org/10.1016/S0149-2063(97)90027-1

D. L. Deadrick , & R. M. Madigan (1990). Dynamic criteria revisited: A longitudinal study of performance stability and predictive validity. Personnel Psychology, 43, 717744. http://dx.doi.org/10.1111/j.1744-6570.1990.tb00680.x

M. D. Dunnette (1963). A note on the criterion. Journal of Applied Psychology, 47, 251254. http://dx.doi.org/10.1037/h0040836

B. Efron (1982). The jackknife, the bootstrap and other resampling plans. Philadelphia, PA: Society for Industrial and Applied Mathematics. http://dx.doi.org/10.1137/1.9781611970319

C. D. Fisher (2008). What if we took within-person performance variability seriously? Industrial and Organizational Psychology, 1, 185189. http://dx.doi.org/10.1111/j.1754-9434.2008.00036.x

E. E. Ghiselli , & M. Haire (1960). The validation of selection tests in the light of the dynamic character of criteria. Personnel Psychology, 13, 225231. http://dx.doi.org/10.1111/j.1744-6570.1960.tb01352.x

S. J. Guastello , & D. Guastello (1998). Origins of coordination and team effectiveness: A perspective from game theory and nonlinear dynamics. Journal of Applied Psychology, 83, 423437. http://dx.doi.org/10.1037//0021-9010.83.3.423

R. M. Guion (1998). Some virtues of dissatisfaction in the science and practice of personnel selection. Human Resource Management Review, 8, 351365. http://dx.doi.org/10.1016/S1053-4822(99)00004-2

P. J. Hanges , B. Schneider , & K. Niles (1990). Stability of performance: An interactionist perspective. Journal of Applied Psychology, 75, 658667. http://dx.doi.org/10.1037//0021-9010.75.6.658

L. Hardy , & G. Parfitt (1991). A catastrophe model of anxiety and performance. British Journal of Psychology, 82, 163178. http://dx.doi.org/10.1111/j.2044-8295.1991.tb02391.x

L. Hardy , G. Parfitt , & J. Pates (1994). Performance catastrophes in sport: A test of the hysteresis hypothesis. Journal of Sports Sciences, 12, 327334. http://dx.doi.org/10.1080/02640419408732178

L. Hardy , S. Beattie , & T. Woodman (2007) Anxiety induced performance catastrophes: Investigating effort required as an asymmetry factor. British Journal of Psychology, 98, 1531. http://dx.doi.org/10.1348/000712606X103428

L. Hardy , J. G. Jones , & D. Gould (1996). Understanding psychological preparation for sport: Theory and practice of elite performers. Chichester, England: Wiley.

D. A. Hofmann , R. Jacobs , & J. E. Baratta (1993). Dynamic criteria and the measurement of change. Journal of Applied Psychology, 78, 194204. http://dx.doi.org/10.1037//0021-9010.78.2.194

D. A. Hofmann , R. Jacobs , & S. J. Gerras (1992). Mapping individual performance over time. Journal of Applied Psychology, 77, 185195. http://dx.doi.org/10.1037//0021-9010.77.2.185

C. L. Hulin , R. Henry , & S. L. Noon (1990). Adding a dimension: Time as a factor in the generalizability of predictive relationships. Psychological Bulletin, 107, 328340. http://dx.doi.org/10.1037//0033-2909.107.3.328

D. Kugiumtzis (2002). Surrogate data test on time series. In A. Soofi & L. Cao (Eds.), Modelling and forecasting financial data, techniques of nonlinear dynamics (pp. 267282). Norwell, MA: Kluwer Academic Publishers.

R. S. Landis (2001). A note on the stability of team performance. Journal of Applied Psychology, 86, 446450. http://dx.doi.org/10.1037//0021-9010.86.3.446

S. Maguire , B. McKelvey , L. Mirabeau , & N. Öztas (2006). Complexity science and organization studies. In S. R. Clegg , C. Hardy , T.B. Lawrence , & W. R. Nord (Eds.), The Sage handbook of organization studies (pp. 165214). London, England: Sage.

K. M. Mathews , M. C. White , & R. G. Long (1999). Why study the complexity in the social sciences? Human Relations, 52, 439462. http://dx.doi.org/10.1177/001872679905200402

J. Navarro , & C. Arrieta (2010). Chaos in human behavior: The case of work motivation. The Spanish Journal of Psychology, 13, 244256.

P. Passos , J. Milho , S. Fonseca , J. Borges , D. Araújo , & K. Davids (2011). Interpersonal distance regulates functional grouping tendencies of agents in team sports. Journal of Motor Behavior, 43, 155163. http://dx.doi.org/10.1080/00222895.2011.552078

A. M. Pettigrew (1990). Longitudinal field research on change: Theory and practice. Organization Science, 1, 267292. http://dx.doi.org/10.1287/orsc.1.3.267

R. Ployhart , & M. D. Hakel (1998). The substantive nature of performance variability: Predicting interindividual differences in intraindividual performance. Personnel Psychology, 51, 859901. http://dx.doi.org/10.1111/j.1744-6570.1998.tb00744.x

W. W. Rambo , A. M. Chomiak , & J. M. Price (1983). Consistency of performance under stable conditions of work. Journal of Applied Psychology, 68, 7887. http://dx.doi.org/10.1037//0021-9010.68.1.78

J. Reb , & R. Cropanzano (2007). Evaluating dynamic performance: The influence of salient gestalt characteristics on performance ratings. Journal of Applied Psychology, 92, 490499. http://dx.doi.org/10.1037/0021-9010.92.2.490

J. Reb , & G. J. Greguras (2008). Dynamic Performance and the Performance–Performance Rating Relation. Industrial and Organizational Psychology, 1, 194196. http://dx.doi.org/10.1111/j.1754-9434.2008.00038.x

J. Reb , & G. J. Greguras (2010). Understanding performance ratings: Dynamic performance, attributions, and rating purpose. Journal of Applied Psychology, 95, 213220. http://dx.doi.org/10.1037/a0017237

P. R. Sackett , & F. Lievens (2008). Personnel selection. Annual Review of Psychology, 59, 419450. http://dx.doi.org/10.1146/annurev.psych.59.103006.093716

T. Schreiber , & A. Schmitz (1996). Improved surrogate data for nonlinearity test. Physical Review Letters, 77, 635638. http://dx.doi.org/10.1103/PhysRevLett.77.635

G. L. Stewart , & A. K. Nandkeolyar (2007). Exploring how constraints created by other people influence intraindividual variation in objective performance measures. Journal of Applied Psychology, 92, 11491158. http://dx.doi.org/10.1037/0021-9010.92.4.1149

M. C. Sturman (2003). Searching for the inverted U-shaped relationship between time and performance: Meta-analysis of the experience/performance, tenure/performance, and age/performance relationships. Journal of Management, 29, 609640. http://dx.doi.org/10.1016/S0149-2063(03)00028-x

M. C. Sturman , R. A. Cheramie , & L. H. Cashen (2005). The impact of job complexity and performance measurement on the temporal consistency, stability, and test-retest reliability of employee job performance ratings. Journal of Applied Psychology, 90, 269283. http://dx.doi.org/10.1037/0021-9010.90.2.269

M. C. Sturman , & C. O. Trevor (2001). The implications of linking the dynamic performance and employee turnover literatures. Journal of Applied Psychology, 86, 684696. http://dx.doi.org/10.1037//0021-9010.86.4.684

J. Theiler , S. Eubank , A. Longtin , B. Galdrikian , & J. D. Farmer (1992). Testing for nonlinearity in time series: The method of surrogate data. Physica D: Nonlinear Phenomena, 58, 7794. http://dx.doi.org/10.1016/0167-2789(92)90102-S

C. J. Thoresen , J. C. Bradley , P. D. Bliese , & J. D. Thoresen (2004). The Big Five personality traits and individual job performance growth trajectories in maintenance and transitional job stages. Journal of Applied Psychology, 89, 835853. http://dx.doi.org/10.1037/0021-9010.89.5.835

R. R. Vallacher , & A. Nowak (1997). The emergence of dynamical social psychology. Psychological Inquiry, 8, 7379. http://dx.doi.org/10.1207/s15327965pli0802_1

T. D. Wall , J. L. Cordery , & C. W. Clegg (2002). Empowerment, performance, and operational uncertainty. Applied Psychology: An International Review, 51, 146169. http://dx.doi.org/10.1111/1464-0597.00083

S. Wiggins (1988). Global bifurcations and chaos: Analytical methods. Berlin, Germany: Springer-Verlag.

M. J. Zickar , & J. E. Slaughter (1999). Examining creative performance over time using hierarchical linear modelling: An illustration using film directors. Human Performance, 12, 211230. http://dx.doi.org/10.1207/s15327043hup1203&4_2

M. J. Zyphur , J.C. Bradley , C. J. Thoresen (2007). The effects of cognitive ability and conscientiousness on performance over time: A censored latent growth model. Human Performance, 21, 127. http://dx.doi.org/10.1080/08959280701521967

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

The Spanish Journal of Psychology
  • ISSN: 1138-7416
  • EISSN: 1988-2904
  • URL: /core/journals/spanish-journal-of-psychology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 6 *
Loading metrics...

Abstract views

Total abstract views: 73 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 26th June 2017. This data will be updated every 24 hours.