Skip to main content
    • Aa
    • Aa

Typical Development of Quantity Comparison in School-Aged Children

  • Danilka Castro Cañizares (a1), Nancy Estévez Pérez (a1) and Otmara Pérez Marrero (a2)

Although basic numerical skills have been widely studied in the last years, very few studies have undertaken a developmental approach. The present study evaluated the development of the magnitude comparison basic numerical ability, in children from first, third and sixth grades by means of the subject's response time in numerical tasks presented in symbolic and non-symbolic formats. The results showed a significant decrease on quantities processing speed as age increases, which suggests numerical skills tend to become automatic with instruction. The differences found, concerning the general achievement pattern in each school year, might express the maturational specificities of the numerical representation system through development.

Aunque las capacidades numéricas básicas han sido ampliamente investigadas en los últimos años, muy pocos estudios han tenido en cuenta una perspectiva del desarrollo de las mismas. En este estudio se evaluó el desarrollo de la capacidad numérica básica de comparación de cantidades en escolares de primero, tercero y sexto grados, a través del análisis del tiempo de reacción de los sujetos en tareas numéricas presentadas en formatos simbólico y no simbólico. Los resultados mostraron una disminución significativa en la velocidad de procesamiento de las cantidades con el incremento de la edad, lo cual apunta a una automatización de las habilidades numéricas con el aumento del nivel escolar. Las diferencias encontradas en el patrón de rendimiento general en cada grado escolar podrían expresar las particularidades de la maduración del sistema de representación numérica en las diferentes etapas del desarrollo.

Corresponding author
Correspondence concerning this article should be addressed to Danilka Castro Cañizares. Centro de Neurociencias de Cuba. Ave 25 No. 15202 esq. 158. Cubanacán, Playa. Ciudad Habana. (Cuba). E-mail:
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

D. Ansari , B. Dhital , & S. Ch. Siong (2006). Parametric effects of numerical distance on the intraparietal sulcus during passive viewing of rapid numerosity changes. Brain Research, 1067, 181188. doi:10.1016/j.brainres.2005.10.083

D. Ansari , J. Fugelsang , B. Dhital , & V. Venkatraman (2006). Dissociating response conflict from numerical magnitude processing in the brain: an event-related fMRI study. NeuroImage, 32(2), 799805. doi:10.1016/j.neuroimage.2006.04.184

S. E. Antell , & D P. Keating (1983). Perception numerical invariance in neonates. Child Development, 54, 695701.doi:10.1111/j.1467-8624.1983.tb00495.x

H. Barth , N. Kanwisher , & E. Spelke (2003). The construction of large number representations in adults. Cognition, 86, 201221. doi:10.1016/S0010-0277(02)00178-6

H. Barth , K. La Mont , J. Lipton , S. Dehaene , N. Kanwisher , & E. S. Spelke (2006). Non symbolic arithmetic in adults and young children. Cognition, 98, 199222. doi:10.1016/j.cognition.2004.09.011

J. L. Booth , & R. S. Siegler (2008). Numerical magnitude representations influence arithmetic learning. Child Development, 79, 10161031. doi:10.1111/j.1467-8624.2008.01173.x

E. M. Brannon (2006). The representation of numerical magnitude. Current Opinion in Neurobiology, 16, 222229. doi:10.1016/j.conb.2006.03.002

P. B. Buckley , & C. B. Gilman (1974). Comparison of digits and dot patterns. Journal of Experimental Psychology, 103, 1131–. doi:10.1037/h0037361

S. Cordes , R. Gelman , C. R. Gallistel , & J. Whalen (2001). Variability signatures distinguish verbal from nonverbal counting for both large and small numbers. Psychological Bulletin, 8(4), 698707. doi:10.3758/BF03196206

S. Dehaene (1992). Varieties of numerical abilities. Cognition, 44, 142. doi:10.1016/0010-0277(92)90049-N

S. Dehaene (1996). The organization of brain activations in number comparison: Event-related potentials and the additivefactors methods. Journal of Cognitive Neuroscience, 8, 4768. doi:10.1162/jocn.1996.8.1.47

S. Dehaene , G. Dehaene-Lambertz , & L. Cohen (1998). Abstract representations of numbers in the animal and human brain. Trends in Neurosciences, 21, 355361. doi:10.1016/S0166-2236(98)01263-6

E. M. Duncan , & C. E. McFarland (1980). Isolating the effects of symbolic distance and semantic congruity in comparative judgments: An additive-factors analysis. Memory & Cognition, 8, 612622. doi:10.3758/BF03213781

D. C. Geary (1993). Mathematical disabilities: Cognitive, neuropsychological, and genetic components. Psychological Bulletin, 114, 345362. doi:10.1037//0033-2909.114.2.345

D. C. Geary , S. C. Brown , & V. A. Samaranayake (1991). Cognitive addition: A short longitudinal study of strategy choice and speed-of-processing differences in normal and mathematically disabled children. Developmental Psychology, 27, 787797. doi:10.1037//0012-1649.27.5.787

L. Girelli , D. Lucangeli , & B. Butterworth (2000). The development of automaticity in accessing number magnitude. Journal of Experimental Child Psychology, 76, 104122. doi:10.1006/jecp.2000.2564

J. Halberda , & L. Feigenson (2008). Developmental change in the acuity of the “number sense”: The approximate number system in 3-, 4-, 5-, and 6-year-olds and adults. Developmental Psychology, 44(5), 14571465. doi:10.1037/a0012682

J. Halberda , M. M. Mazzocco , & L. Feigenson (2008). Individual differences in nonverbal number acuity correlate with maths achievement. Nature, 455, 665668. doi:10.1038/nature07246

L. Hasher , & R. T. Zacks (1979). Automatic and effortful processes in memory. Journal of Experimental Psychology: General, 108, 356388. doi:10.1037//0096-3445.108.3.356

I. Holloway , & D. Ansari (2008). Domain-specific and domain-general changes in children's development of number comparison. Developmental Science, 11, 644649. doi:10.1111/j.1467-7687.2008.00712.x

I. Holloway , & D. Ansari (2009). Mapping numerical magnitudes onto symbols: The numerical distance effect and individual differences in children's mathematics achievement. Journal of Experimental Child Psychology, 103, 1729. doi:10.1016/j.jecp.2008.04.001

G. Huntley-Fenner , & E. Cannon (2000). Preschoolers' magnitude comparisons are mediated by a preverbal analog mechanism. Psychological Science, 11, 147152. doi:10.1111/1467-9280.00230

V. Izard , & S. Dehaene (2008). Calibrating the mental number line. Cognition, 106(3), 12211247. doi:10.1016/j.cognition.2007.06.004

L. Kaufmann , P. Handl , & B. Thoeny (2003). Evaluation of a numeracy intervention program focusing on basic numerical knowledge and conceptual knowledge. A pilot study. Journal of Learning Disabilities, 36, 564573. doi:10.1177/00222194030360060701

K. L. Koontz , & D. B. Berch (1996). Identifying simple numerical stimuli: processing inefficiencies exhibited by arithmetic learning disabled children. Mathematical Cognition, 2(1), 123. doi:10.1080/135467996387525

K. Lander , A. Bevan , & B. Butterworth (2004). Developmental dyscalculia and basic numerical capacities: a study of 8–9-year-old students. Cognition, 93, 99125. doi:10.1016/j.cognition.2003.11.004

K. Landerl , & C. Kölle (2009). Typical and atypical development of basic numerical skills in elementary school. Journal of Experimental Child Psychology, 103(4), 546565.doi:10.1016/j.jecp.2008.12.006

J. S. Lipton , & E. S. Spelke (2005). Preschool children's mapping of number words to nonsymbolic numerosities. Child Development, 76, 978988. doi:10.1111/j.1467-8624.2005.00891.x

G. D. Logan (1988). Towards an instance theory of automatization. Psychological Review, 95, 492527. doi:10.1037/0033-295X.95.4.492

T. Luculano , J. Tang , Ch. Hall , & B. Butterworth (2008). Core information processing deficits in developmental dyscalculia and low numeracy. Developmental Science, 11(5), 669680. doi:10.1111/j.1467-7687.2008.00716.x

J. F. McLean , & G. J. Hitch (1999). Working memory impairments in children with specific arithmetical difficulties. Journal of Experimental Child Psychology, 74, 240260. doi:10.1006/jecp.1999.2516

K. S. Mix. , J. Huttenlocher , & S. C. Levine (2002). Multiple cues for quantification in infancy: Is number one of them?. Psychological Bulletin, 128, 278294. doi:10.1037//0033-2909.128.2.278

R. S. Moyer , & T. K. Landauer (1967). Time required for judgments of numerical inequality. Nature, 215, 15191520. doi:10.1038/2151519a0

M. Ch. Passolunghi , & L. S. Siegel (2004). Working memory and access to numerical information in children with disability in mathematics. Journal of Experimental Child Psychology, 88, 348367. doi:10.1016/j.jecp.2004.04.002

P. Pica , C. Lemer , V. Izard , & S. Dehaene (2004). Exact and approximate arithmetic in an Amazonian indigene group. Science, 306, 499503. doi:10.1126/science.1102085

P. Pinel , S. Dehaene , D. Riviere , & D. LeBihan (2001). Modulation of parietal activation by semantic distance in a number comparison task. Neuroimage, 14(5), 10131026. doi:10.1006/nimg.2001.0913

P. Pinel , M. Piazza , D. LeBihan , & S. Dehaene (2004). Distributed and overlapping cerebral representations of number size and luminance during comparative judgments. Neuron, 41(6), 983993. doi:10.1016/S0896-6273(04)00107-2

L. Rousselle , & M. Noël (2007). Basic numerical skills in children with mathematics learning disabilities: A comparison of symbolic vs. non-symbolic number magnitude processing. Cognition, 102(3), 361395. doi:10.1016/j.cognition.2006.01.005

L. Rousselle , E. Palmers , & M. Noël (2004). Magnitude comparison in preschoolers: What counts? Influence of perceptual variables. Journal of Experimental Child Psychology, 87, 5784. doi:10.1016/j.jecp.2003.10.005

O. Rubinsten , A. Henik , A. Berger , & S. Shahar-Shalev (2002). The development of internal representations of magnitude and their association with arabic numerals. Journal of Experimental Child Psychology, 81(1), 7492. doi:10.1006/jecp.2001.2645

R. Sekuler , & D. Mierkiewicz (1977). Children's judgments of numerical equality. Child Development, 48, 630633. doi:10.2307/1128664

M. S. Strauss , & L. E. Curtis (1981). Infant perception of numerosity. Child Development, 52, 11461152. doi:10.1111/j.1467-8624.1981.tb03160.x

E. Temple , & M. I. Posner (1998). Brain mechanisms of quantity are similar in 5-year-olds and adults. Proceedings of the National Academy of Sciences of the USA, 95, 78367841. doi:10.1073/pnas.95.13.7836

V. Walsh (2003). A theory of magnitude: common cortical metrics of time, space and quantity. Trends in Cognitive Sciences, 7(11), 483488. doi:10.1016/j.tics.2003.09.002

J. Whalen , C. R. Gallistel , & R. Gelman (1999). Nonverbal counting in humans: the psychophysics of number representation. Psychological Science, 10, 130137. doi:10.1111/1467-9280.00120

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

The Spanish Journal of Psychology
  • ISSN: 1138-7416
  • EISSN: 1988-2904
  • URL: /core/journals/spanish-journal-of-psychology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 2 *
Loading metrics...

Abstract views

Total abstract views: 90 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 24th May 2017. This data will be updated every 24 hours.