Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-24T17:11:40.927Z Has data issue: false hasContentIssue false

X-Ray and Gamma-Ray Signatures of Wolf-Rayet Supernova Explosions

Published online by Cambridge University Press:  03 August 2017

Lih-Sin The
Affiliation:
Department of Physics and Astronomy Clemson University, Clemson, SC 29634, U.S.A.
Donald D. Clayton
Affiliation:
Department of Physics and Astronomy Clemson University, Clemson, SC 29634, U.S.A.
Adam Burrows
Affiliation:
Departments of Physics and Astronomy University of Arizona, Tucson, AZ 85721, U.S.A.

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

It is widely speculated that a Type Ib supernova is the explosion of a Wolf-Rayet star. We calculate the X-ray and gamma-ray signatures of models of that type, assuming all hard photons to have originated with Ni decay chains, in hopes of providing diagnostics of the exposed-core models of massive stars, which constitute one model of the Wolf-Rayet stars, calculated by Ensman and Woosley (1988). These provide the characteristic luminosity peak and light curve of Type Ib supernovae for helium-core masses between 4 and 6 M. We compute gamma-ray line shapes and fluxes and the Comptonized X-ray continuum resulting from the decay of the radioactive 56Co and 57Co isotopes that are synthesized by the explosion of the presupernova star (the suggested Wolf-Rayet or post-Wolf-Rayet star) with a Monte Carlo transport code. The expansion velocity, the total mass of the ejecta, the radial mixing of radioactivity in that ejecta, and the 56Ni yield effect both the strength and the evolution of the hard radiation. With the anticipated launch of Gamma Ray Observatory, we can hope to detect Type Ib supernovae to distances of 3 Mpc and utilize the characteristics of the gamma lines and X-ray spectrum to distinguish between differing Type Ib supernova models and to address their suggested relationship to Wolf-Rayet stars.

Type
Session VII. Evolution
Copyright
Copyright © Kluwer 1991 

References

Arnett, D.W. (1979) ‘On the theory of Type I supernovae’, Astrophys. J., L37L40.Google Scholar
Ambwani, K. and Sutherland, P. (1988) ‘Gamma-ray spectra and energy deposition for Type Ia supernovae’, Astrophys. J., 325, 820827.Google Scholar
Bhatia, A.K. and Underhill, A.B. (1986) “The statistical equilibrium of hydrogen and helium in a radiation fiels, with an application to interpreting Wolf-Rayet spectra’, Astrophys. J. Suppl., 60, 323356.CrossRefGoogle Scholar
Bhatia, A.K. and Underhill, A.B. (1988) ‘Carbon and nitrogen lines in the spectra of Wolf-Rayet stars’, Astrophys. J. Suppl., 67, 187223.Google Scholar
Bussard, R., Burrows, A., and The, L.-S. (1989) ‘SN1987A gamma-ray line profiles and fluxes’, Astrophys. J., 341, 401413.CrossRefGoogle Scholar
Burrows, A. and The, L.-S. (1990) ‘X-ray and gamma-ray signatures of Type la super-novae’, to appear in Astrophys. J. Google Scholar
Catchpole, R.M., Whitelock, P.A., Feast, M.W., Menzies, J.W., Glass, I.S., Marang, F., Laing, J.D., Spencer Jones, J.H., Roberts, G., Balona, L.A., Carter, B.S., Laney, C.D., Lloyd Evans, T., Sekiguchi, K., Hutchinson, M.G., Maddison, R., Albinson, J., Evans, A., Allen, D.A., Winkler, H., Fairall, A., Corbally, C., Davies, J.K., and Parker, Q. (1988) ‘Spectroscopic and photometric observations of SN1987a -II. days 51 to 134’, Monthly Notices Roy. Astron. Soc. 231, 75p89p.Google Scholar
Chan, K.W. and Lingenfelter, R.E. (1988) ‘Gamma ray lines from supernovae’, in Gehrels, N. and Share, G. (eds.), Nuclear Spectroscopy of Astrophysical Sources, AIP Conf. Proc. 170, New York, pp. 110115.Google Scholar
Clayton, D.D. (1974) ‘Line 57Co gamma rays: New diagnostic of supernova structure’, Astrophys. J., 188, 155157.Google Scholar
Clayton, D.D., Colgate, S.A., and Fishman, G. (1969) ‘Gamma ray lines from young supernova remnants’, Astrophys. J., 155, 7582.Google Scholar
Colgate, S.A. and McKee, C. (1969) ‘Early supernova Luminosity’, Astrophys. J., 157, 623643.Google Scholar
Cook, W.R., Palmer, D.M., Prince, T.A., Schindler, S., Starr, C.H., and Stone, E.C. (1988) ‘An imaging observation of SN 1987A at gamma-ray energies’, Astrophys. J. Letters, 334, L87L90.Google Scholar
Ensman, L.M. and Woosley, S.E. (1988) ‘Explosions in Wolf-Rayet stars and Type Ib supernovae’, Astrophys. J., 333, 754776.Google Scholar
Kumagai, S., Shigeyama, T., Nomoto, K., Itoh, M., Nishimura, J., Tsuruta, S. (1989) ‘Gamma-ray, X-ray, and optical light from the cobalt and the neutron stars in SN 1987A’, Astrophys. J., 345, 412422.CrossRefGoogle Scholar
Kurfess, J.D., Johnson, W.N., Kinzer, R.L., Share, G.H., Strickman, M.S., Ulmer, M.P., Clayton, D.D., Dyer, C.S. (1983) ‘The Oriented scintillation spectrometer experiment for the gamma-ray observatory’, Adv. Space Res., 3, 109112.Google Scholar
Langer, N. (1989) ‘Standard models of Wolf-Rayet stars’, Astron. Astrophys., 210, 93113.Google Scholar
Leising, M.D. (1988) ‘Gamma-rays and X-rays from SN1987A’, Nature, 332, 516518.CrossRefGoogle Scholar
Maeder, A. and Meynet, G. (1987) ‘Grids of evolutionary models of massive stars with mass loss and overshooting. Properties of Wolf-Rayet stars sensitive to overshooting’, Astron. Astrophys. 182, 243263.Google Scholar
Matz, S.M., Share, G.H., Leising, M.D., Chupp, E.L., Vestrand, W.T., Purcell, W.R., Strickman, M.S., and Reppin, C. (1988) ‘Gamma-ray line emission from SN1987A’, Nature, 331, 416418.Google Scholar
Nomoto, K., Thielemann, F.-K., and Yokoi, K. (1984) ‘Accreting white dwarf models for Type I supernovae. III. carbon deflagration supernovae’, Astrophys. J., 286, 644658.Google Scholar
Pinto, P.A. and Woosley, S.E. (1988) ‘X-ray and gamma-ray emission from supernova 1987A’, Astrophys. J., 329, 820830.Google Scholar
Sandie, W.G., Nakano, G.H., Chase, L.F. Jr, Fishman, G.J., Meegan, C.A., Wilson, R.B., Paciesas, W.S., and Lasche, G.P. (1988) ‘High-resolution observations of gamma-ray line emission from SN 1987A’, Astrophys. J. Letters, 334, L91L94.Google Scholar
Sunyaev, R., Kaniovsky, A., Efremov, V., Gilfanov, M., Churazov, E., Grebenev, S., Luznetsov, A., Melioransky, A., Yamburenko, N., Yunin, S., Stepanov, D., Chulkov, I., Pappe, N., Boyarskiy, M., Gavrilova, E., Loznikov, V., Prudkoglyad, A., Rodin, V., Reppin, C., Pietsch, W., Engelhauser, J., Trümper, J., Voges, W., Kendziorra, E., Bezler, M., Staubert, R., Brinkman, A.C., Heise, J., Meis, W.A., Jager, R., Skinner, G.K., Al-Eman, O., Patterson, T.G., Wilmore, A.P. (1988) ‘Discovery of hard X-ray emission from supernova 1987A’, Nature, 330, 227229.Google Scholar
Teegarden, B.J., Barthelmy, S.D., Gehrels, N., Tueller, J., Leventhal, M., and MacCallum, C.J. (1989) ‘Resolution of the 1, 238 keV gamma-ray line from supernova 1987A’, Nature, 339, 122123.Google Scholar
The, L.-S., Burrows, A., and Bussard, R. (1990) ‘X-ray and gamma-ray fluxes from SN1987A’, Astrophys. J., 352, 731740.Google Scholar
Underhill, A.B., Gilroy, K.K., and Hill, G.M. (1990) ‘About the eclipsing Wolf-Rayet binary HD214419’, Astrophys. J., 351, 651665.Google Scholar
Wheeler, J.C. and Levreault, R. (1985) ‘The peculiar type I supernova in NGC991’, Astrophys. J. (Letters), 294, L17L24.Google Scholar
Woosley, S.E. and Pinto, P.A. (1988) ‘Gamma-producing radioactivities from supernovae’, in Gehrels, N. and Share, G.H. (eds.), Nuclear Spectroscopy of Astrophysical Sources, AIP Conf. Proc. 170, New York, p98109.Google Scholar