Skip to main content Accessibility help
×
Home

Aluminium and fluoride in drinking water in relation to later dementia risk

Published online by Cambridge University Press:  14 March 2019


Tom C. Russ
Affiliation:
Co-Director, Alzheimer Scotland Dementia Research Centre, University of Edinburgh; Member, Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh; Honorary Clinical Senior Lecturer, Centre for Dementia Prevention, University of Edinburgh; Honorary Clinical Senior Lecturer, Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh; and Principal Investigator, Scottish Neuroprogressive and Dementia Network, NHS Scotland, UK
Lewis O. J. Killin
Affiliation:
Scottish Dementia Informatics Platform Project Manager, Centre for Dementia Prevention, University of Edinburgh; and Clinical Studies Officer, Scottish Neuroprogressive and Dementia Network, NHS Scotland, UK
Jean Hannah
Affiliation:
University of Stirling, UK
G. David Batty
Affiliation:
Member, Alzheimer Scotland Dementia Research Centre, University of Edinburgh; Member, Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh; and Professor of Epidemiology, Department of Epidemiology and Public Health, University College London, UK
Ian J. Deary
Affiliation:
Director, Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, UK
John M. Starr
Affiliation:
Director, Alzheimer Scotland Dementia Research Centre, University of Edinburgh; and Co-Director, Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, UK
Corresponding
E-mail address:

Abstract

Background

Environmental risk factors for dementia are poorly understood. Aluminium and fluorine in drinking water have been linked with dementia but uncertainties remain about this relationship.

Aims

In the largest longitudinal study in this context, we set out to explore the individual effect of aluminium and fluoride in drinking water on dementia risk and, as fluorine can increase absorption of aluminium, we also examine any synergistic influence on dementia.

Method

We used Cox models to investigate the association between mean aluminium and fluoride levels in drinking water at their residential location (collected 2005–2012 by the Drinking Water Quality Regulator for Scotland) with dementia in members of the Scottish Mental Survey 1932 cohort who were alive in 2005.

Results

A total of 1972 out of 6990 individuals developed dementia by the linkage date in 2012. Dementia risk was raised with increasing mean aluminium levels in women (hazard ratio per s.d. increase 1.09, 95% CI 1.03–1.15, P < 0.001) and men (1.12, 95% CI 1.03–1.21, P = 0.004). A dose-response pattern of association was observed between mean fluoride levels and dementia in women (1.34, 95% CI 1.28–1.41, P < 0.001) and men (1.30, 95% CI 1.22–1.39, P < 0.001), with dementia risk more than doubled in the highest quartile compared with the lowest. There was no statistical interaction between aluminium and fluoride levels in relation with dementia.

Conclusions

Higher levels of aluminium and fluoride were related to dementia risk in a population of men and women who consumed relatively low drinking-water levels of both.


Type
Papers
Copyright
Copyright © The Royal College of Psychiatrists 2019 

Access options

Get access to the full version of this content by using one of the access options below.

Footnotes

Declaration of interest: None.


References

1Livingston, G, Sommerlad, A, Orgeta, V, Costafreda, SG, Huntley, J, Ames, D, et al. Dementia prevention, intervention, and care. Lancet; 390(10113): 2673–734.CrossRefGoogle Scholar
2Russ, TC, Gatz, M, Pedersen, NL, Hannah, J, Wyper, G, Batty, GD, et al. Geographical variation in dementia: examining the role of environmental factors in Sweden and Scotland. Epidemiology 2015; 26(2): 263–70.CrossRefGoogle ScholarPubMed
3Mokry, LE, Ross, S, Morris, JA, Manousaki, D, Forgetta, V, Richards, JB. Genetically decreased vitamin D and risk of Alzheimer disease. Neurology 2016; 87(24): 2567–74.CrossRefGoogle ScholarPubMed
4Killin, LO, Starr, JM, Shiue, IJ, Russ, TC. Environmental risk factors for dementia: a systematic review. BMC Geriatr 2016; 16(1): 175.CrossRefGoogle ScholarPubMed
5Cacciottolo, M, Wang, X, Driscoll, I, Woodward, N, Saffari, A, Reyes, J, et al. Particulate air pollutants, APOE alleles and their contributions to cognitive impairment in older women and to amyloidogenesis in experimental models. Transl Psychiatry 2017; 7: e1022.CrossRefGoogle ScholarPubMed
7World Health Organization. Guidelines for Drinking-Water Quality (4th edn). World Health Organization, 2011.Google Scholar
8Kawahara, M, Kato-Negishi, M. Link between aluminum and the pathogenesis of Alzheimer's disease: the integration of the aluminum and amyloid cascade hypotheses. Int J Alzheimer's Dis 2011; 2011: 276393.Google ScholarPubMed
9Rondeau, V, Jacqmin-Gadda, H, Commenges, D, Helmer, C, Dartigues, J-F. Aluminum and silica in drinking water and the risk of Alzheimer's disease or cognitive decline: findings from 15-year follow-up of the PAQUID cohort. Am J Epidemiol 2008; 169(4): 489–96.CrossRefGoogle ScholarPubMed
10Lubkowska, A, Zyluk, B, Chlubeka, D. Interactions between fluorine and aluminum. Fluoride 2002; 35(2): 73–7.Google Scholar
11Deary, IJ, Whalley, LJ, Starr, JM. A Lifetime of Intelligence: Follow-Up Studies of the Scottish Mental Surveys of 1932 and 1947. American Psychological Association, 2009.CrossRefGoogle Scholar
12World Health Organization. Manual of the International Classification of Diseases, Injuries, and Causes of Death, Ninth Revision (ICD-9). WHO, 1977.Google Scholar
13World Health Organization. The ICD-10 Classification of Mental and Behavioural Disorders: Clinical Descriptions and Diagnostic Guidelines. WHO, 1992.Google Scholar
14SIMD. 2012 Technical Notes. Scottish Government, 2012 (https://www2.gov.scot/Resource/0050/00504822.pdf).Google Scholar
15Doubal, FN, Ali, M, Batty, GD, Charidimou, A, Eriksdotter, M, Hofmann-Apitius, M, et al. Big data and data repurposing - using existing data to answer new questions in vascular dementia research. BMC Neurol 2017; 17(1): 72.CrossRefGoogle ScholarPubMed
16Russ, TC, Hannah, J, Batty, GD, Booth, CC, Deary, IJ, Starr, JM. Childhood cognitive ability and incident dementia: the 1932 Scottish Mental Survey Cohort into their 10th Decade. Epidemiology 2017; 28(3): 361–4.CrossRefGoogle ScholarPubMed
17Altmann, P, Cunningham, J, Dhanesha, U, Ballard, M, Thompson, J, Marsh, F. Disturbance of cerebral function in people exposed to drinking water contaminated with aluminium sulphate: retrospective study of the Camelford water incident. BMJ 1999; 319(7213): 807–11.CrossRefGoogle ScholarPubMed
18Still, CN, Kelley, P. On the incidence of primary degenerative dementia vs. water fluoride content in South Carolina. Neurotoxicology 1980; 1(4): 125–31.Google Scholar
19Verstraeten, SV, Aimo, L, Oteiza, PI. Aluminium and lead: molecular mechanisms of brain toxicity. Arch Toxicol 2008; 82(11): 789802.CrossRefGoogle ScholarPubMed
20Matthews, FE, Arthur, A, Barnes, LE, Bond, J, Jagger, C, Robinson, L, et al. A two-decade comparison of prevalence of dementia in individuals aged 65 years and older from three geographical areas of England: results of the Cognitive Function and Ageing Study I and II. Lancet 2013; 382(9902): 1405–12.CrossRefGoogle Scholar
21Russ, TC, Batty, GD, Starr, JM. Cognitive and behavioural predictors of survival in Alzheimer disease: results from a sample of treated patients in a tertiary-referral memory clinic. Int J Geriatr Psychiatry 2012; 27(8): 844–53.CrossRefGoogle Scholar
22Russ, TC, Parra, MA, Lim, AE, Law, E, Connelly, PJ, Starr, JM. Prediction of general hospital admission in people with dementia: cohort study. Br J Psychiatry 2015; 206(2): 153–9.CrossRefGoogle ScholarPubMed
23Sudlow, C, Gallacher, J, Allen, N, Beral, V, Burton, P, Danesh, J, et al. UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med 2015; 12(3): e1001779.CrossRefGoogle ScholarPubMed
24Wu, Y-T, Fratiglioni, L, Matthews, FE, Lobo, A, Breteler, MM, Skoog, I, et al. Dementia in western Europe: epidemiological evidence and implications for policy making. Lancet Neurol 2016; 15(1): 116–24.CrossRefGoogle ScholarPubMed
25Bradford Hill, A. The environment and disease: association or causation? Proc R Soc Med 1965; 58: 295300.Google Scholar
26Calvin, CM, Batty, GD, Der, G, Brett, CE, Taylor, A, Pattie, A, et al. Childhood intelligence in relation to major causes of death in 68 year follow-up: prospective population study. BMJ 2017; 357: j2708.CrossRefGoogle ScholarPubMed
27McGurn, B, Deary, IJ, Starr, JM. Childhood cognitive ability and risk of late-onset Alzheimer and vascular dementia. Neurology 2008; 71(14): 1051–6.CrossRefGoogle ScholarPubMed
28Whalley, LJ, Starr, JM, Athawes, R, Hunter, D, Pattie, A, Deary, IJ. Childhood mental ability and dementia. Neurology 2000; 55(10): 1455–9.CrossRefGoogle ScholarPubMed
29Duan, Q, Jiao, J, Chen, X, Wang, X. Association between water fluoride and the level of children's intelligence: a dose–response meta-analysis. Public Health 2018; 154: 8797.CrossRefGoogle ScholarPubMed

Russ et al. supplementary material

Tables S1-S2 and Figures S1-S3

[Opens in a new window]
File 402 KB
Submit a response

eLetters

No eLetters have been published for this article.

Altmetric attention score


Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 2611
Total number of PDF views: 782 *
View data table for this chart

* Views captured on Cambridge Core between 14th March 2019 - 1st December 2020. This data will be updated every 24 hours.

Hostname: page-component-6d4bddd689-54zsc Total loading time: 1.011 Render date: 2020-12-01T13:51:05.379Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags last update: Tue Dec 01 2020 13:44:22 GMT+0000 (Coordinated Universal Time) Feature Flags: { "metrics": true, "metricsAbstractViews": false, "peerReview": true, "crossMark": true, "comments": true, "relatedCommentaries": true, "subject": true, "clr": false, "languageSwitch": true }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Aluminium and fluoride in drinking water in relation to later dementia risk
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Aluminium and fluoride in drinking water in relation to later dementia risk
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Aluminium and fluoride in drinking water in relation to later dementia risk
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *