Skip to main content
×
×
Home

Approaches to gene mapping in complex disorders and their application in child psychiatry and psychology

  • Philip J. Asherson (a1) and Sarah Curran (a1)
Abstract
Background

Twin studies demonstrate the importance of genes and environment in the aetiology of childhood psychiatric and neurodevelopmental disorders. Advances in molecular genetics enable the identification of genes involved in complex disorders and enable the study of molecular mechanisms and gene–environment interactions.

Aims

To review the role of molecular genetics studies in childhood behavioural and developmental traits.

Method

Molecular approaches to complex disorders are reviewed, with examples from autism, reading disability and attention-deficit hyperactivity disorder (ADHD).

Results

The most robust finding in ADHD is the association of a variable number tandem repeat polymorphism in exon 3 of the DRD4 gene. Other replicated associations with ADHD are outlined in the text. In autism, there is a replicated linkage finding on chromosome 7. Linkage studies in reading disability have confirmed a locus on chromosome 6 and strongly suggest one on chromosome 15.

Conclusions

In the next 5–10 years susceptibility genes for these disorders will be established. Describing their relationship to biological and behavioural function will be a far greater challenge.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Approaches to gene mapping in complex disorders and their application in child psychiatry and psychology
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Approaches to gene mapping in complex disorders and their application in child psychiatry and psychology
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Approaches to gene mapping in complex disorders and their application in child psychiatry and psychology
      Available formats
      ×
Copyright
Corresponding author
Philip J. Asherson, Social, Genetic and Developmental Psychiatry Research Centre, Institute of Psychiatry, De Crespigny Park, Denmark Hill, London SE5 8AF, UK
Footnotes
Hide All

See editorial, pp. 93–94, this issue.

Declaration of interest

None. Funding detailed in Acknowledgements.

Footnotes
References
Hide All
Alarcon, M., Plomin, R., Fulker, D. W., et al (1998) Multivariate path analysis of specific cognitive abilities data at 12 years of age in the Colorado adoption project. Behavior Genetics, 28, 255264.
American Psychiatric Association (1994) Diagnostic and Statistical Manual of Mental Disorders (4th edn) (DSM–IV). Washington, DC: APA.
Anon, . (1999) SNP attacks on complex traits (editorial). Nature Genetics, 20, 3.
Asherson, P., Mant, R., Williams, N., et al (1998) A study of chromosome 4p markers and dopamine D5 receptor gene in schizophrenia and bipolar disorder. Molecular Psychiatry, 3, 310320.
Auranen, M., Nieminen, T., Majuri, S., et al (2000) Analysis of autism susceptibility gene loci on chromosomes 1p, 4p, 6q, 7q, 13q, 15q, 16p, 17q, 19q and 22q in Finnish multiplex families. Molecular Psychiatry, 5, 320322.
Bailey, A., Palferman, S., Heavey, L., et al (1998) Autism: the phenotype in relatives. Journal of Autism and Developmental Disorders, 28, 369392.
Barr, C. L., Wigg, K. G., Feng, Y., et al (2000) Attention-deficit hyperactivity disorder and the gene for the dopamine D5 receptor. Molecular Psychiatry, 5, 548551.
Barrett, S., Beck, J. C., Bernier, R., et al (1999) An autosomal genomic screen for autism. Collaborative linkage study of autism. American Journal of Medical Genetics, 88, 609615.
Biederman, J., Faraone, S. V., Keenan, K., et al (1990) Family-genetic and psychosocial risk factors in DSM–III attention deficit disorder. Journal of the American Academy of Child and Adolescent Psychiatry, 29, 526533.
Biederman, J., Faraone, S. V., Keenan, K., et al (1992) Further evidence for family-genetic risk factors in attention deficit hyperactivity disorder: patterns of comorbidity in probands and relatives in psychiatrically and pediatrically referred samples. Archives of General Psychiatry, 49, 728738.
Bisgaard, M. L., Eiberg, H. & Moller, N. (1987) Dyslexia and chromosome 15 heteromorphism: negative lod score in a Danish material. Clinical Genetics, 32, 118119.
Blackwood, D. H. R., He, L. Morris, S. W., et al (1996) A locus for bipolar affective disorder on chromosome 4p. Nature Genetics, 12, 427430.
Cantwell, D. P. (1972) Psychiatric illness in families of hyperactive children. Archives of General Psychiatry, 27, 728738.
Cardon, L. R., Smith, S. D., Fulker, D. W., et al (1994) Quantitative trait locus for reading disability on chromosome 6. Science, 266, 276279.
Chakravati, A. (1999) Population genetics – making sense out of sequence. Nature Genetics, 21, 5660.
Collier, D. A., Curran, S. & Asherson, P. (2000) Mission: not impossible? Candidate gene studies in child psychiatric disorders. Molecular Psychiatry, 5, 457460.
Craddock, N. & Owen, M. J. (1996) Modern molecular genetic approaches to psychiatric disease. British Medical Bulletin, 52, 434452.
Craig, I. W., McClay, J., Plomin, R., et al (2000) Chasing behaviour genes into the next millenium. Tibtech, 18, 2226.
Curran, S., Mill, J., Sham, P., et al (2001a) QTL association analysis of the DRD4 exon 3 VNTR polymorphism in a population sample of children screened with a parent rating scale for ADHD symptoms. American Journal of Medical Genetics, in press.
Curran, S., Mill, J., Tahir, E., et al (2001b) Association study of a dopamine transporter polymorphism and attention deficit hyperactivity disorder in UK and Turkish samples. Molecular Psychiatry, in press.
Dale, P. S., Simonoff, E., Bishop, D. V. M., et al (1998) Genetic influence on language delay in two-year-old children. Nature America, 14, 324–328.
Daly, G., Hawi, Z., Fitzgerald, M., et al (1999) Mapping susceptibility loci in attention deficit hyperactivity disorder: preferential transmission of parental alleles at DATI, DBH and DRD5 to affected children. Molecular Psychiatry, 4, 192196.
Daniels, J., Holmans, P., Williams, N., et al (1998) A simple method for analyzing microsatellite allele image patterns generated from DNA pools and its application to allelic association studies. American Journal of Human Genetics, 62, 11891197.
DeFries, J. C. & Fulker, D. W. (1985) Multiple regression analysis of twin data. Behavior Genetics, 15, 467473.
DeFries, J. C., & Fulker, D. W. (1988) Multiple regression analysis of twin data: etiology of deviant scores versus individual differences. Acta Geneticae Medicae et Gemellologiae, 37, 205216.
DeFries, J. C., Fulker, D. W. & LaBuda, M. C. (1987) Evidence for a genetic aetiology in reading disability of twins. Nature, 329, 537539.
Ewald, H., Degn, B., Mors, O., et al (1998) Support for the possible locus on chromosome 4p16 for bipolar affective disorder. Molecular Psychiatry, 3, 442448.
Falk, C. T. & Rubinstein, P. (1987) Haplotype relative risks: an easy reliable way to construct a proper control sample for risk calculations. Annals of Human Genetics, 51, 227233.
Faraone, S. V., Doyle, A. E., Mick, E., et al (2001) Meta-analysis of the association between the dopamine D4 gene 7-repeat allele and attention deficit hyperactivity disorder. American Journal of Medical Genetics, in press.
Fisher, S. E., Marlow, A. J., Lamb, J., et al (1999) A quantitative-trait locus on chromosome 6p influences different aspects of developmental dyslexia. American Journal of Human Genetics, 64, 146156.
Fulker, D. W. & Cherny, S. S. (1996) An improved multipoint sib-pair analysis of quantitative traits. Behavior Genetics, 26, 527532.
Fulker, D. W. Cherny, S. S. & Cardon, L. R. (1995) Multipoint interval mapping of quantitative trait loci, using sib pairs. American Journal of Human Genetics, 56, 12241233.
Fulker, D. W. Cherny, S. S., Sham, P. C., et al (1999) Combined linkage and association sib-pair analysis for quantitative traits. American Journal of Human Genetics, 64, 259267
Gayan, J., Smith, S. D., Cherney, S. S., et al (1999) Quantitative-trait locus for specific language and reading deficits on chromosome 6p. American Journal of Human Genetics, 64, 157164.
Gillis, J. J., Gilger, J. W., Pennington, B. F., et al (1992) Attention deficit disorder in reading-disabled twins: evidence for a genetic aetiology. Journal of Abnormal Child Psychology, 20, 303315.
Griffin, T. J., Hall, J. G., Prudent, J. R., et al (1999) Direct genetic analysis by matrix-assisted laser desorption/ionization mass spectrometry. Proceedings of the National Academy of Sciences of the USA, 96, 63016306.
Grigorenko, E. L., Wood, F. B., Meyer, M. S., et al (1997) Susceptibility loci for distinct components of developmental dyslexia on chromosomes 6 and 15. American Journal of Human Genetics, 60, 2739.
Gross-Glenn, K., Duara, R., Barker, W. W., et al (1991) Positron-emission tomographic studies during serial word-reading by normal and dyslexic adults. Journal of Clinical and Experimental Neuropsychology, 13, 531544.
Haseman, J. K. & Elston, R. (1972) The investigation of linkage between a quantitative trait and a marker locus. Behavior Genetics, 2, 319.
International Molecular Genetic Study of Autism Consortium (1998) A full genome screen for autism with evidence for linkage to a region on chromosome 7q. Human Molecular Genetics, 7, 571578.
International SNP Map Working Group (2001) A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature, 409, 928932.
Kruglyak, L. & Lander, E. S. (1995) Complete multipoint sib-pair analysis of qualitative and quantitative traits. American Journal of Human Genetics, 57, 439454.
Kruglyak, L. & Nickerson, D. A. (2001) Variation is the spice of life. Nature Genetics, 27, 234236.
Lamb, J. A., Moore, J., Bailey, A., et al (2000) Autism: recent molecular genetic advances. Human Molecular Genetics, 9, 861868.
Landegren, U., Nilsson, M. & Kwok, P. Y. (1998) Reading bits of genetic information: methods for singlenucleotide polymorphism analysis. Genome Research, 8, 769776.
Lander, E. (1999) Array of hope. Nature Genetics, 21 (suppl.), 34.
Lander, E. & Kruglyak, L. (1995) Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nature Genetics, 11, 241247.
Le Couteur, A., Rutter, M., Lord, C., et al (1989) Autism diagnostic interview: a standardized investigator-based instrument. Journal of Autism Developmental Disorders, 19, 363387.
Lord, C., Rutter, M., Goode, S., et al (1989) Autism diagnostic observation schedule: a standardized observation of communicative and social behavior. Journal of Autism and Developmental Disorders, 19, 185212.
Maestrini, E., Marlow, A. J., Weeks, D. E., et al (1998) Molecular genetic investigations of autism. Journal of Autism and Developmental Disorders, 28, 427437.
McGuffin, P., Owen, M. J., O'Donovan, M. C., et al (1994) Seminars in Psychiatric Genetics. London: Gaskell.
Mill, J., Curran, S., Kent, L., et al (2001) Attention deficit hyperactivity disorder (ADHD) and the dopamine D4 receptor gene: evidence of association but no linkage in a UK sample. Molecular Psychiatry, in press.
Morris, D. W., Robinson, L., Turic, D., et al (2000) Family-based association mapping provides evidence for a gene for reading disability on chromosome 15q. Human Molecular Genetics, 9, 843848.
O'Donovan, M. C. & Owen, M. J. (1999) Candidate-gene association studies of schizophrenia. American Journal of Human Genetics, 65, 587592.
Phillipe, A., Martinez, M., Guilloud-Bataille, M., et al (1999) Genome-wide scan for autism susceptibility genes. Paris Autism Research International Sibpair Study. Human Molecular Genetics, 8, 805812.
Plomin, R., McClearn, G. E. & Gora-Maslak, G. (1991) Quantitative trait loci and psychopharmacology. Journal of Psychopharmacology, 5, 19.
Plomin, R., Owen, M. J. & McGuffin, P. (1994) The genetic basis of complex human behaviors. Science, 264, 17331739.
Plomin, R., DeFries, J. C., McClearn, G. E., et al (2000) Behavioural Genetics (4th edn). Worth Freeman.
Purcell, S., Cherney, S. S., Hewitt, J. K., et al (2001) Optimal sibship selection for genotyping in QTL Linkage Analysis. Human Heridity, in press.
Rabin, M., Wen, X. L., Hepburn, M., et al (1993) Suggestive linkage of developmental dyslexia to chromosome 1p34–p36. Lancet, 342, 178.
Risch, N. (2000) Searching for genetic determinants in the new millennium. Nature, 405, 847856.
Risch, N. & Merikangas, K. (1996) The future of genetic studies of complex human diseases. Science, 273, 15161517.
Risch, N. & Zhang, H. (1995) Extreme discordant sib pairs for mapping quantitative trait loci in humans. Science, 268, 15841589.
Risch, N., Spiker, D., Lotspeich, L., et al (1999) A genomic screen of autism: evidence for a multilocus etiology. American Journal of Human Genetics, 65, 493507.
Rowe, D. C., Stever, C., Giedinghagen, L. N., et al (1998) Dopamine DRD4 receptor polymorphism and attention deficit hyperactivity disorder. Molecular Psychiatry, 3, 419426.
Rutter, M., Silberg, J., O'Connor, T., et al (1999a) Genetics and child psychiatry: I. Advances in quantitative and molecular genetics. Journal of Child Psychology and Psychiatry and Allied Disciplines, 40, 318.
Rutter, M., Silberg, J., O'Connor, T., et al (1999b) Genetics and child psychiatry: II. Empirical research findings. Journal of Child Psychology and Psychiatry and Allied Disciplines, 40, 1955.
Smalley, S. L., Bailey, J. N., Palmer, C. G., et al (1998) Evidence that the dopamine D4 receptor is a susceptibility gene in attention deficit hyperactivity disorder. Molecular Psychiatry, 3, 427430.
Smith, S. D., Kimberling, W. J., Pennington, B. F., et al (1983) Specific reading disability: identification of an inherited form through linkage analysis. Science, 219, 4590, 1345–1347.
Spielman, R. S. & Ewens, W. J. (1996) The TDT and other family-based tests for linkage disequilibrium and association. American Journal of Human Genetics, 59, 983989.
Stevenson, J., Pennington, B. F., Gilger, J. W., et al (1993) Hyperactivity and spelling disability; testing for shared genetic aetiology Journal of Child Psychology and Psychiatry and Allied Disciplines, 34, 11371152.
Sunohara, G. A., Roberts, W. Malone, M., et al (2000) Linkage of the dopamine D4 receptor gene and attention-deficit/hyperactivity disorder. Journal of the American Academy of Child and Adolescent Psychiatry, 39, 537542.
Swanson, J. M., Sunohara, G. A., Kennedy, J. L., et al (1998) Association of the dopamine receptor D4 (DRD4) gene with a refined phenotype of attention deficit hyperactivity disorder (ADHD); a family-based approach. Molecular Psychiatry, 3, 3841.
Tahir, E., Yazgan, Y, Cirakoglu, B., et al (2000) Association and linkage of DRD4 and DRD5 with attention deficit hyperactivity disorder (ADHD) in a sample of Turkish children. Molecular Psychiatry, 5, 396404.
Taylor, E., Chadwick, O., Heptinstall, E., et al (1996) Hyperactivity and conduct problems as risk factors for adolescent development. Journal of the American Academy of Child and Adolescent Psychiatry, 35, 12131226.
Thapar, A., Holmes, J., Poulton, K., et al (1999) Genetic basis of attention deficit and hyperactivity. British Journal of Psychiatry, 174, 105111.
Weber, J. L. & May, P. E. (1990) Dinucleotide repeat polymorphism at the D22S156 locus. Nucleic Acids Research, 18, 6465.
World Health Organization (1992) Tenth Revision of the International Classification of Diseases and Related Health Problems (ICD–10). Geneva: WHO.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

The British Journal of Psychiatry
  • ISSN: 0007-1250
  • EISSN: 1472-1465
  • URL: /core/journals/the-british-journal-of-psychiatry
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 13 *
Loading metrics...

Abstract views

Total abstract views: 49 *
Loading metrics...

* Views captured on Cambridge Core between 2nd January 2018 - 26th May 2018. This data will be updated every 24 hours.

Approaches to gene mapping in complex disorders and their application in child psychiatry and psychology

  • Philip J. Asherson (a1) and Sarah Curran (a1)
Submit a response

eLetters

No eLetters have been published for this article.

×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *