Skip to main content Accesibility Help
×
×
Home

Genotype effects of CHRNA7, CNR1 and COMT in schizophrenia: interactions with tobacco and cannabis use

  • Stanley Zammit (a1), Gillian Spurlock (a1), Hywel Williams (a1), Nadine Norton (a1), Nigel Williams (a1), Michael C. O'Donovan (a1) and Michael J. Owen (a1)...
Abstract
Background

Genetic variations might modify associations between schizophrenia and cannabis or tobacco use.

Aims

To examine whether variants within the cannabinoid receptor (CNR1) and α7 nicotinic receptor (CHRNA7) genes are associated with schizophrenia, and whether these effects vary according to cannabis or tobacco use. We also examined a putative interaction between cannabis and Val158Met within the catechol-O-methyltransferase gene (COMT).

Method

Genotype effects of CHRNA7 and CNR1 were studied in a case–control sample of 750 individuals with schizophrenia and 688 controls, with interactions for these genes studied in small subsamples. A case-only design of 493 of the schizophrenia group was used to examine interactions between cannabis use and COMT.

Results

There was no evidence of association between schizophrenia and CNR1 (OR=0.97, 95% CI 0.82–1.13) or CHRNA7 (OR=1.07, 95% CI 0.77–1.49) genotypes, or of interactions between tobacco use and CHRNA7, or cannabis use and CNR1 or COMT genotypes.

Conclusions

Neither CNR1 nor CHRNA7 variation appears to alter the risk of schizophrenia. Furthermore, our results do not support the presence of different effects of cannabis use on schizophrenia according to variation within COMT.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Genotype effects of CHRNA7, CNR1 and COMT in schizophrenia: interactions with tobacco and cannabis use
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Genotype effects of CHRNA7, CNR1 and COMT in schizophrenia: interactions with tobacco and cannabis use
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Genotype effects of CHRNA7, CNR1 and COMT in schizophrenia: interactions with tobacco and cannabis use
      Available formats
      ×
Copyright
Corresponding author
Dr Stanley Zammit, Department of Psychological Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK. Tel: +44 (0)2920 743058; fax: +44 (0)2920 747839; email: zammits@Cardiff.ac.uk
Footnotes
Hide All

Declaration of interest

None.

Footnotes
References
Hide All
Adler, L. E., Pachtman, E., Franks, R. D., et al (1982) Neurophysiological evidence for a defect in neuronal mechanisms involved in sensory gating in schizophrenia. Biological Psychiatry, 17, 639654.
Adler, L. E., Hoffer, L. D., Wiser, A., et al (1993) Normalization of auditory physiology by cigarette smoking in schizophrenic patients. American Journal of Psychiatry, 150, 18561861.
American Psychiatric Association (1994) Diagnostic and Statistical Manual of Mental Disorders (4th edn) (DSM–IV). APA.
Arseneault, L., Cannon, M., Poulton, R., et al (2002) Cannabis use in adolescence and risk for adult psychosis: longitudinal prospective study. BMJ, 325, 12121213.
Bickford, P. C. & Wear, K. D. (1995) Restoration of sensory gating of auditory evoked response by nicotine in fimbria-fornix lesioned rats. Brain Research, 705, 235240.
Braff, D. L. & Saccuzzo, D. P. (1985) The time course of information-processing deficitsin schizophrenia. American Journal of Psychiatry, 142, 170174.
Braff, D. L., Grillon, C. & Geyer, M. A. (1992) Gating and habituation of the startle reflex in schizophrenic patients. Archives of General Psychiatry, 49, 206215.
Bray, N. J., Buckland, P. R., Williams, N. M., et al (2003) A haplotype implicated in schizophrenia susceptibility is associated with reduced COMT expression in human brain. American Journal of Human Genetics, 73, 152161.
Caspi, A., Moffitt, T. E., Cannon, M., et al (2005) Moderation of the effect of adolescent-onset cannabis use on adult psychosis by a functional polymorphism in the catechol-O-methyltransferase gene: longitudinal evidence of a gene X environment interaction. Biological Psychiatry, 57, 11171127.
Chen, J., Lipska, B. K., Halim, N., et al (2004) Functional analysis of genetic variation in catechol-O-methyltransferase (COMT): effects on mRNA, protein, and enzyme activity in postmortem human brain. American Journal of Human Genetics, 75, 807821.
Coon, H., Plaetke, R., Holik, J., et al (1993) Use of a neurophysiological trait in linkage analysis of schizophrenia. Biological Psychiatry, 34, 277289.
Dudbridge, F. (2003) Pedigree disequilibrium tests for multilocus haplotypes. Genetic Epidemiology, 25, 115121.
Endicott, J., Spitzer, R. L., Fleiss, J. L., et al (1976) The Global Assessment Scale. A procedure for measuring overall severity of psychiatric disturbance. Archives of General Psychiatry, 33, 766771.
Fan, J. B., Ma, J., Li, X. W., et al (2006) Population-based and family-based association studies of an (AC)n dinucleotide repeat in alpha-7 nicotinic receptor subunit gene and schizophrenia. Schizophrenia Research, 84, 222227.
Freedman, R., Coon, H., Myles-Worsley, M., et al (1997) Linkage of a neurophysiological deficit in schizophrenia to a chromosome 15 locus. Proceedings of the National Academy of Sciences of the USA, 94, 587592.
Gault, J., Hopkins, J., Berger, R., et al (2003) Comparison of polymorphisms in the alpha7 nicotinic receptor gene and its partial duplication in schizophrenic and control subjects. American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics, 123, 3949.
Gray, R., Rajan, A. S., Radcliffe, K. A., et al (1996) Hippocampal synaptic transmission enhanced by low concentrations of nicotine. Nature, 383, 713716.
Greenbaum, L., Kanyas, K., Karni, O., et al (2006) Why do young women smoke? I. Direct and interactive effects of environment, psychological characteristics and nicotinic cholinergic receptor genes. Molecular Psychiatry, 11, 312322.
Henquet, C., Rosa, A., Krabbendam, L., et al (2006) An experimental study of catechol-o-methyltransferase Vall58Met moderation of delta-9-tetrahydrocannabinol-induced effects on psychosis and cognition. Neuropsychopharmacology, 31, 27482757.
Hopfer, C. J., Young, S. E., Purcell, S., et al (2006) Cannabis receptor haplotype associated with fewer cannabis dependence symptoms in adolescents. American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics, 141, 895901.
Houy, E., Raux, G., Thibaut, F., et al (2004) The promoter −194 C polymorphism of the nicotinic alpha 7 receptor gene has aprotective effect against the P50 sensory gating deficit. Molecular Psychiatry, 9, 320322.
Khoury, M. J. & Flanders, W. D. (1996) Nontraditional epidemiologic approaches in the analysis of gene–environment interaction: case–control studies with no controls! American Journal of Epidemiology, 144, 207213.
Leonard, S., Adams, C., Breese, C. R., et al (1996) Nicotinic receptor function in schizophrenia. Schizophrenia Bulletin, 22, 431445.
Leonard, S., Gault, J., Moore, T., et al (1998) Further investigation of a chromosome 15 locus in schizophrenia: analysis of affected sibpairs from the NIMH Genetics Initiative. American Journal of Medical Genetics, 81, 308312.
Leonard, S., Gault, J., Hopkins, J., et al (2002) Association of promoter variants in the alpha7 nicotinic acetylcholine receptor subunit gene with an inhibitory deficit found in schizophrenia. Archives of General Psychiatry, 59, 10851096.
Leroy, S., Griffon, N., Bourdel, M. C., et al (2001) Schizophrenia and the cannabinoid receptor type I (CBI): association study using a single-base polymorphism in coding exon I. American Journal of Medical Genetics, 105, 749752.
Lewis, C. M. (2002) Genetic association studies: design, analysis and interpretation. Briefings in Bioinformatics, 3, 146153.
Lewis, C. M., Levinson, D. F., Wise, L. H., et al (2003) Genome scan meta-analysis of schizophrenia and bipolar disorder, part II: Schizophrenia. American Journal of Human Genetics, 73, 3448.
Li, C. H., Liao, H. M. & Chen, C. H. (2004) Identification of molecular variants at the promoter region of the human alpha 7 neuronal nicotinic acetylcholine receptor subunit gene but lack of association with schizophrenia. Neuroscience Letters, 372, 15.
Martinez-Gras, I., Hoenicka, J., Ponce, G., et al (2006) (AAT)n repeat in the cannabinoid receptor gene, CNR1: association with schizophrenia in a Spanish population. European Archives of Psychiatry and Clinical Neuroscience, 256, 437441.
McGuffin, P., Farmer, A. & Harvey, I. (1991) A polydiagnostic application of operational criteria in studies of psychotic illness. Development and reliability of the OPCRIT system. Archives of General Psychiatry, 48, 764770.
Olincy, A., Ross, R. G., Young, D. A., et al (1998) Improvement in smooth pursuit eye movements after cigarette smoking in schizophrenic patients. Neuropsychopharmacology, 18, 175185.
Owen, M. J., Holmans, P. & McGuffin, P. (1997) Association studies in psychiatric genetics. Molecular Psychiatry, 2, 270273.
Riley, B. P., Makoff, A., Mogudi-Carter, M., et al (2000) Haplotype transmission disequilibrium and evidence for linkage of the CHRNA7 gene region to schizophrenia in Southern African Bantu families. American Journal of Medical Genetics, 96, 196201.
Shifman, S., Bronstein, M., Sternfeld, M., et al (2002) A highly significant association between a COMT haplotype and schizophrenia. American Journal of Human Genetics, 71, 12961302.
Stevens, K. E., Freedman, R., Collins, A. C., et al (1996) Genetic correlation of inhibitory gating of hippocampal auditory evoked response and alpha-bungarotoxin-binding nicotinic cholinergic receptors in inbred mouse strains. Neuropsychopharmacology, 15, 152162.
Stevens, K. E., Kem, W. R., Mahnir, V. M., et al (1998) Selectivealpha7-nicotinic agonists normalize inhibition of auditory response in DBA mice. Psychopharmacology, 136, 320327.
Ujike, H., Takaki, M., Nakata, K., et al (2002) CNR1, central cannabinoid receptor gene, associated with susceptibility to hebephrenic schizophrenia. Molecular Psychiatry, 7, 515518.
Waldo, M. C., Cawthra, E., Adler, L. E., et al (1994) Auditory sensory gating, hippocampal volume, and catecholamine metabolism in schizophrenics and their siblings. Schizophrenia Research, 12, 93106.
Williams, H. J., Glaser, B., Williams, N. M., et al (2005) No association between schizophrenia and polymorphisms in COMT in two large samples. American Journal of Psychiatry, 162, 17361738.
Wing, J. K., Babor, T., Brugha, T., et al (1990) SCAN. Schedules for Clinical Assessment in Neuropsychiatry. Archives of General Psychiatry, 47, 589593.
Xu, J., Pato, M. T., Torre, C. D., et al (2001) Evidence for linkage disequilibrium between the alpha 7-nicotinic receptor gene (CHRNA7) locus and schizophrenia in Azorean families. American Journal of Medical Genetics, 105, 669674.
Zammit, S., Allebeck, P., Andreasson, S., et al (2002) Self reported cannabis use as a risk factor for schizophrenia in Swedish conscripts of 1969: historical cohort study. BMJ, 325, 1199.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

The British Journal of Psychiatry
  • ISSN: 0007-1250
  • EISSN: 1472-1465
  • URL: /core/journals/the-british-journal-of-psychiatry
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed

Genotype effects of CHRNA7, CNR1 and COMT in schizophrenia: interactions with tobacco and cannabis use

  • Stanley Zammit (a1), Gillian Spurlock (a1), Hywel Williams (a1), Nadine Norton (a1), Nigel Williams (a1), Michael C. O'Donovan (a1) and Michael J. Owen (a1)...
Submit a response

eLetters

No eLetters have been published for this article.

×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *