Skip to main content
×
×
Home

How antidepressants work: New perspectives on the pathophysiology of depressive disorder

  • Ian C. Reid (a1) and Caroline A. Stewart (a1)
Abstract
Background

New research in animals is beginning to change radically our understanding of the biology of stress and the effects of antidepressant agents.

Aims

To relate recent findings from the basic neurosciences to the pathophysiology of depressive disorder.

Method

Drawing together findings from molecular and physiological studies in rats, social studies in primates and neuropsychological studies in humans, we review the neurotrophic and neuroplastic effects of antidepressants and stress.

Results

Stress and antidepressants have reciprocal actions on neuronal growth and vulnerability (mediated by the expression of neurotrophins) and synaptic plasticity (mediated by excitatory amino acid neurotransmission) in the hippocampus and other brain structures. Stressors have the capacity to progressively disrupt both the activities of individual cells and the operating characteristics of networks of neurons throughout the life cycle, while antidepressant treatments act to reverse such injurious effects.

Conclusions

We propose a central role for the regulation of synaptic connectivity in the pathophysiology of depressive disorder.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      How antidepressants work: New perspectives on the pathophysiology of depressive disorder
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      How antidepressants work: New perspectives on the pathophysiology of depressive disorder
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      How antidepressants work: New perspectives on the pathophysiology of depressive disorder
      Available formats
      ×
Copyright
Corresponding author
Professor Ian C. Reid, Department of Psychiatry, University of Dundee, Ninewells Hospital, Dundee DD1 9SY
Footnotes
Hide All

Declaration of interest

Our laboratory has received research funding from Organon Laboratories and Wyeth UK.

Footnotes
References
Hide All
Abas, M. A., Sahakian, B. J. & Levy, R. (1990) Neuropsychological deficits and CT scan changes in elderly depressives. Psychological Medicine, 20, 507520.
Altar, C. A. (1999) Neurotrophins and depression. Trends in Pharmacological Sciences, 20, 5961.
Bazin, N., Perruchet, P., De Bonis, M., et al (1994) The dissociation of explicit and implicit memory in depressed patients. Psychological Medicine, 24, 239245.
Drevets, W. C., Price, J. L., Simpson, J. R., et al (1997) Subgenual prefrontal cortex abnormalities in mood disorders. Nature, 386, 824827.
Duman, R. S., Heninger, G. R. & Nestler, E. J. (1997) A molecular and cellular theory of depression. Archives of General Psychiatry, 54, 597606.
Gould, E., Tanapat, P., McEwen, B., et al (1998) Proliferation of granule cell precursors in the dentate gyrus of adult monkeys is diminished by stress. Proceedings of the National Academy of Sciences of the USA, 95, 31683171.
Henke, P. G. (1989) Synaptic efficacy in the entorhinal–dentate pathway and stress ulcers in rats. Neuroscience Letters, 107, 110113.
Henke, P. G. (1990) Granule cell potentials in the dentate gyrus of the hippocampus: coping behaviour and stress ulcers in rats. Behavioural Brain Research, 36, 97103.
Jeffery, K. & Reid, I. C. (1997) Modifiable neuronal connections: an overview for psychiatrists. American Journal of Psychiatry, 154, 156164.
Kehoe, P., Hoffman, J. H., Austin-LaFrance, R. J., et al (1995) Neonatal isolation enhances hippocampal dentate response to tetanization in freely moving juvenile male rats. Experimental Neurology, 136, 8997.
Kim, J. J. & Yoon, K. S. (1998) Stress: metaplastic effects in the hippocampus. Trends in Neurosciences, 21, 505509.
LeDoux, J. (1996) The Emotional Brain. New York: Simon and Schuster.
Levine, E. S., Crozier, R. A., Black, I. B., et al (1998) Brain-derived neurotrophic factor modulates hippocampal synaptic transmission by increasing N-methyl-d-aspartic acid receptor activity. Proceedings of the National Academy of Sciences of the USA, 95, 1023510239.
Madsen, T. M., Treschow, A., Bengzon, J., et al (2000) Increased neurogenesis in a model of electroconvulsive therapy. Biological Psychiatry, 47, 10431049.
Pavlides, C., Kimura, A., Magarinos, A. M., et al (1995) Opposing roles of type I and type II adrenal steroid receptors in hippocampal long-term potentiation. Neuroscience, 68, 387394.
Petrie, R. X., Reid, I. C. & Stewart, C. A. (2000) The NMDA receptor, synaptic plasticity and depressive disorder: a critical review. Pharmacology and Therapeutics, 87, 1125.
Reid, I. C. & Stewart, C. A. (1997) Seizures, memory and synaptic plasticity. Seizure, 6, 351359.
Schaaf, M. J., de Jong, J., de Kloet, R., et al (1998) Downregulation of BDNF mRNA and protein in the rat hippocampus by corticosterone. Brain Research, 813, 112120.
Shah, P. J., Ebmeier, K. P., Glabus, M. F., et al (1998) Cortical grey matter reductions associated with treatment-resistant chronic unipolar depression. Controlled magnetic resonance imaging study. British Journal of Psychiatry, 172, 527532.
Siuciak, J. A., Lewis, D. R., Wiegand, S. J., et al (1997) Antidepressant-like effect of brain-derived neurotrophic factor (BDNF). Pharmacology, Biochemistry and Behavior, 56, 131137.
Skolnick, P. (1999) Antidepressants for the new millennium. European Journal of Pharmacology, 375, 3140.
Smith, M. A., Makino, S., Kvetnansky, R., et al (1995) Stress alters the expression of brain-derived neurotrophic factor and neurotrophin-3 mRNAs in the hippocampus. Journal of Neuroscience, 15, 17681777.
Stewart, C. & Reid, I. (1993) Electroconvulsive stimulation and synaptic plasticity. Brain Research, 620, 139141.
Stewart, C. & Reid, I. (2000) Repeated ECS and fluoxetine administration have equivalent effects on hippocampal synaptic plasticity. Psychopharmacology, 48, 217223.
Vaidya, V. A., Siuciak, J. A., Du, F., et al (1999) Hippocampal mossy fiber sprouting induced by chronic electroconvulsive seizures. Neuroscience, 89, 157166.
Vickery, R., Morris, S. H. & Bindman, L. J. (1997) Metabotropic glutamate receptors are involved in long-term potentiation in isolated slices of rat medial frontal cortex. Journal of Neurophysiology, 78, 30393046.
Xu, L., Holscher, C., Anwyl, R., et al (1998) Glucocorticoid receptor and protein/RNA synthesis dependent mechanisms underlie the control of synaptic plasticity by stress. Proceedings of the National Academy of Sciences of the USA, 95, 32043208.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

The British Journal of Psychiatry
  • ISSN: 0007-1250
  • EISSN: 1472-1465
  • URL: /core/journals/the-british-journal-of-psychiatry
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed

How antidepressants work: New perspectives on the pathophysiology of depressive disorder

  • Ian C. Reid (a1) and Caroline A. Stewart (a1)
Submit a response

eLetters

No eLetters have been published for this article.

×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *