Skip to main content
×
×
Home

Interaction between the BDNF gene Val/66/Met polymorphism and morning cortisol levels as a predictor of depression in adult women

  • J. Herbert (a1), M. Ban (a2), G. W. Brown (a3), T. O. Harris (a3), A. Ogilvie (a4), R. Uher (a5) and T. K. J. Craig (a3)...
Abstract
Background

Common genetic variants, such as the brain-derived neurotrophic factor (BDNF) Val/66/Met polymorphism (rs6265), are known to interact with environmental factors such as early adversity to increase the risk of subsequent major depression. Much less is known about how they interact with individual differences in cortisol, although these also represent a risk for major depression.

Aims

To determine whether this BDNF variant moderated the risk represented by higher levels of morning salivary cortisol in adult women.

Method

We recruited 279 premenopausal women who were at high risk of major depressive disorder because of either negative self-evaluation, unsupportive core relationship or chronic subclinical symptoms of depression or anxiety. Morning salivary cortisol was measured daily for up to 10 days at entry. Participants were followed up for about 12 months by telephone calls at 3–4 monthly intervals. Major depression and severe life events were assessed through interviews at baseline and follow-up; DNA was obtained from the saliva.

Results

There were 53 onsets (19%) of depressive episodes during follow-up. There was a significant U-shaped relationship between adjusted morning cortisol levels at baseline and the probability of depression onset during follow-up. In total, 51% experienced at least one severe life event/difficulty, and this strongly predicted subsequent onsets of depressive episodes. The BDNF Val/66/Met genotype was not directly associated with onsets of depression or with cortisol levels, but there was significant interaction between Val/66/Met and cortisol: the association between baseline cortisol and depression was limited to those with the Val/66/Val variant. There was no interaction between life events and either this BDNF polymorphism or cortisol levels.

Conclusions

Morning salivary cortisol interacts with the BDNF Val/66/Met polymorphism in predicting new depressive episodes. This paper adds to the evidence that single gene polymorphisms interact with endogenous factors to predict depression.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Interaction between the BDNF gene Val/66/Met polymorphism and morning cortisol levels as a predictor of depression in adult women
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Interaction between the BDNF gene Val/66/Met polymorphism and morning cortisol levels as a predictor of depression in adult women
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Interaction between the BDNF gene Val/66/Met polymorphism and morning cortisol levels as a predictor of depression in adult women
      Available formats
      ×
Copyright
Royal College of Psychiatrists, This paper accords with the Wellcome Trust Open Access policy and is governed by the licence available athttp://www.rcpsych.ac.uk/pdf/Wellcome%20Trust%20licence.pdf
Corresponding author
J. Herbert, Cambridge Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0SP, UK. Email: jh24@cam.ac.uk
Footnotes
Hide All

Declaration of interest

None.

Footnotes
References
Hide All
1 Duman, RS, Monteggia, LM. A neurotrophic model for stress-related mood disorders. Biol Psychiatry 2006; 59: 1116–27.
2 D'Sa, C, Duman, RS. Antidepressants and neuroplasticity. Bipolar Disord 2002; 4: 183–94.
3 Garcia, R. Stress, metaplasticity, and antidepressants. Curr Mol Med 2002; 2: 629–38.
4 Alme, MN, Wibrand, K, Dagestad, G, Bramham, CR. Chronic fluoxetine treatment induces brain region-specific upregulation of genes associated with BDNF-induced long-term potentiation. Neural Plast 2007; 2007: 264–96.
5 De Foubert, G, Carney, SL, Robinson, CS, Destexhe, EJ, Tomlinson, R, Hicks, CA, et al. Fluoxetine-induced change in rat brain expression of brain-derived neurotrophic factor varies depending on length of treatment. Neuroscience 2004; 128: 597604.
6 Pinnock, SB, Lazic, SE, Wong, HT, Wong, IH, Herbert, J. Synergistic effects of dehydroepiandrosterone and fluoxetine on proliferation of progenitor cells in the dentate gyrus of the adult male rat. Neuroscience 2009; 158: 1644–51.
7 Rantamaki, T, Hendolin, P, Kankaanpaa, A, Mijatovic, J, Piepponen, P, Domenici, E, et al. Pharmacologically diverse antidepressants rapidly activate brain-derived neurotrophic factor receptor TrkB and induce phospholipase-Cgamma signaling pathways in mouse brain. Neuropsychopharmacology 2007; 32: 2152–62.
8 Schmidt, HD, Duman, RS. The role of neurotrophic factors in adult hippocampal neurogenesis, antidepressant treatments and animal models of depressive-like behavior. Behav Pharmacol 2007; 18: 391418.
9 Pinnock, SB, Blake, AM, Platt, NJ, Herbert, J. The roles of BDNF, pCREB and Wnt3a in the latent period preceding activation of progenitor cell mitosis in the adult dentate gyrus by fluoxetine. PLoS One 2010; 5: e13652.
10 Pinnock, SB, Herbert, J. Brain-derived neurotropic factor and neurogenesis in the adult rat dentate gyrus: interactions with corticosterone. Eur J Neurosci 2008; 27: 2493–500.
11 Malberg, JE, Duman, RS. Cell proliferation in adult hippocampus is decreased by inescapable stress: reversal by fluoxetine treatment. Neuropsychopharmacology 2003; 28: 1562–71.
12 Malberg, JE, Eisch, AJ, Nestler, EJ, Duman, RS. Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. J Neurosci 2000; 20: 9104–10.
13 Karege, F, Perret, G, Bondolfi, G, Schwald, M, Bertschy, G, Aubry, JM. Decreased serum brain-derived neurotrophic factor levels in major depressed patients. Psychiatry Res 2002; 109: 143–8.
14 Karege, F, Bondolfi, G, Gervasoni, N, Schwald, M, Aubry, JM, Bertschy, G. Low brain-derived neurotrophic factor (BDNF) levels in serum of depressed patients probably results from lowered platelet BDNF release unrelated to platelet reactivity. Biol Psychiatry 2005; 57: 1068–72.
15 Lee, BH, Kim, H, Park, SH, Kim, YK. Decreased plasma BDNF level in depressive patients. J Affect Disord 2007; 101: 239–44.
16 Chen, ZY, Patel, PD, Sant, G, Meng, CX, Teng, KK, Hempstead, BL, et al. Variant brain-derived neurotrophic factor (BDNF) (Met66) alters the intracellular trafficking and activity-dependent secretion of wild-type BDNF in neurosecretory cells and cortical neurons. J Neurosci 2004; 24: 4401–11.
17 Schumacher, J, Jamra, RA, Becker, T, Ohlraun, S, Klopp, N, Binder, EB, et al. Evidence for a relationship between genetic variants at the brain-derived neurotrophic factor (BDNF) locus and major depression. Biol Psychiatry 2005; 58: 307–14.
18 Levinson, DF. The genetics of depression: a review. Biol Psychiatry 2006; 60: 8492.
19 Hong, CJ, Huo, SJ, Yen, FC, Tung, CL, Pan, GM, Tsai, SJ. Association study of a brain-derived neurotrophic-factor genetic polymorphism and mood disorders, age of onset and suicidal behavior. Neuropsychobiology 2003; 48: 186–9.
20 Caspi, A, Sugden, K, Moffitt, TE, Taylor, A, Craig, IW, Harrington, H, et al. Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Science 2003; 301: 386–9.
21 Bukh, JD, Bock, C, Vinberg, M, Werge, T, Gether, U, Kessing, LV. No interactions between genetic polymorphisms and stressful life events on outcome of antidepressant treatment. European Neuropsychopharmacol 2010; 20: 327–35.
22 Karg, K, Burmeister, M, Shedden, K, Sen, S. The serotonin transporter promoter variant (5-HTTLPR), stress, and depression meta-analysis revisited: evidence of genetic moderation. Arch Gen Psychiatry 2011; 68: 444–54.
23 Kim, JM, Stewart, R, Kim, SW, Yang, SJ, Shin, IS, Kim, YH, et al. Interactions between life stressors and susceptibility genes (5-HTTLPR and BDNF) on depression in Korean elders. Biol Psychiatry 2007; 62: 423–8.
24 Uher, R, McGuffin, P. The moderation by the serotonin transporter gene of environmental adversity in the etiology of depression: 2009 update. Mol Psychiatry 2010; 15: 1822.
25 Kim, JM, Stewart, R, Kim, SW, Yang, SJ, Shin, IS, Kim, YH, et al. BDNF genotype potentially modifying the association between incident stroke and depression. Neurobiol Aging 2008; 29: 789–92.
26 Bukh, JD, Bock, C, Vinberg, M, Werge, T, Gether, U, Vedel Kessing, L. Interaction between genetic polymorphisms and stressful life events in first episode depression. J Affect Disord 2009; 119: 107–15.
27 Kaufman, J, Yang, BZ, Douglas-Palumberi, H, Grasso, D, Lipschitz, D, Houshyar, S, et al. Brain-derived neurotrophic factor-5-HTTLPR gene interactions and environmental modifiers of depression in children. Biol Psychiatry 2006; 59: 673–80.
28 Carver, CS, Johnson, SL, Joormann, J, Lemoult, J, Cuccaro, ML. Childhood adversity interacts separately with 5-HTTLPR and BDNF to predict lifetime depression diagnosis. J Affect Disord 2011; 132: 8993.
29 Aguilera, M, Arias, B, Wichers, M, Barrantes-Vidal, N, Moya, J, Villa, H, et al. Early adversity and 5-HTT/BDNF genes: new evidence of gene-environment interactions on depressive symptoms in a general population. Psychol Med 2009; 39: 1425–32.
30 Sachar, EJ, Hellman, L, Roffwarg, HP, Halpern, FS, Fukushima, DK, Gallagher, TF. Disrupted 24-hour patterns of cortisol secretion in psychotic depression. Arch Gen Psychiatry 1973; 28: 1924.
31 Carroll, BJ. Use of the dexamethasone suppression test in depression. J Clin Psychiatry 1982; 43: 4450.
32 Rush, AJ, Giles, DE, Schlesser, MA, Orsulak, PJ, Parker, CR Jr, Weissenburger, JE, et al. The dexamethasone suppression test in patients with mood disorders. J Clin Psychiatry 1996; 57: 470–84.
33 Harris, TO, Borsanyi, S, Messari, S, Stanford, K, Brown, GW, Cleary, SE, et al. Morning cortisol as a risk factor for subsequent major depressive disorder in adult women. Br J Psychiatry 2000; 177: 505–10.
34 Goodyer, IM, Tamplin, A, Herbert, J, Altham, PM. Recent life events, cortisol, dehydroepiandrosterone and the onset of major depression in high-risk adolescents. Br J Psychiatry 2000; 177: 499504.
35 Goodyer, IM, Croudace, T, Dudbridge, F, Ban, M, Herbert, J. Polymorphisms in BDNF (Val66Met) and 5-HTTLPR, morning cortisol and subsequent depression in at-risk adolescents. Br J Psychiatry 2010; 197: 365–71.
36 Wing, JK, Barbor, T, Brugha, TS. SCAN: schedule for clinical assessment in neuropsychiatry. Arch Gen Psychiatry 1990; 47: 589–93.
37 Brown, GW, Bifulco, A, Harris, T, Bridge, L. Life stress, chronic subclinical symptoms and vulnerability to clinical depression. J Affect Disord 1986; 11: 119.
38 Brown, GW, Andrews, B, Harris, T, Adler, Z, Bridge, L. Social support, self-esteem and depression. Psychol Med 1986; 16: 813–31.
39 American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders (4th edn) (DSM-IV). APA, 1994.
40 Finlay-Jones, R, Brown, GW, Duncan-Jones, P, Harris, T, Murphy, E, Prudo, R. Depression and anxiety in the community: replicating the diagnosis of a case. Psychol Med 1980; 10: 445–54.
41 Andrews, B, Brown, GW. Self Evaluation and Social Support (SESS) Manual. Royal Holloway College, 1991.
42 Brown, GW, Harris, TO. Social Origins of Depression: A Study of Psychiatric Disorder in Women. Tavistock Publications, 1978.
43 Brown, GW, Harris, TO. Life Events & Illness. Guilford Press, 1989.
44 Brown, GW, Bifulco, A, Harris, TO. Life events, vulnerability and onset of depression: some refinements. Br J Psychiatry 1987; 150: 3042.
45 Nepomnaschy, PA, Altman, RM, Watterson, R, Co, C, McConnell, DS, England, BG. Is cortisol excretion independent of menstrual cycle day? A longitudinal evaluation of first morning urinary specimens. PLoS One 2011; 6: e18242.
46 Rothman, KJ, Greenland, RW, Lash, TL. Modern Epidemiology. Lippincott Williams & Wilkins, 2008.
47 Young, AH, Gallagher, P, Porter, RJ. Elevation of the cortisol-dehydroepiandrosterone ratio in drug-free depressed patients. Am J Psychiatry 2002; 159: 1237–9.
48 Kendler, KS, Thornton, LM, Gardner, CO. Genetic risk, number of previous depressive episodes, and stressful life events in predicting onset of major depression. Am J Psychiatry 2001; 158: 582–6.
49 Homberg, JR, Lesch, KP. Looking on the bright side of serotonin transporter gene variation. Biol Psychiatry 2011; 69: 513–9.
50 Pinnock, SB, Balendra, R, Chan, M, Hunt, LT, Turner-Stokes, T, Herbert, J. Interactions between nitric oxide and corticosterone in the regulation of progenitor cell proliferation in the dentate gyrus of the adult rat. Neuropsychopharmacology 2007; 32: 493504.
51 Huang, GJ, Herbert, J. Stimulation of neurogenesis in the hippocampus of the adult rat by fluoxetine requires rhythmic change in corticosterone. Biol Psychiatry 2006; 59: 619–24.
52 Frodl, T, Reinhold, E, Koutsouleris, N, Reiser, M, Meisenzahl, EM. Interaction of childhood stress with hippocampus and prefrontal cortex volume reduction in major depression. J Psychiatr Res 2010; 44: 799807.
53 Castren, E, Rantamaki, T. Neurotrophins in depression and antidepressant effects. Novartis Found Symp 2008; 289: 4352; discussion 3–9, 87–93.
54 Maya Vetencourt, JF, Sale, A, Viegi, A, Baroncelli, L, De Pasquale, R, O'Leary, OF, et al. The antidepressant fluoxetine restores plasticity in the adult visual cortex. Science 2008; 320: 385–8.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

The British Journal of Psychiatry
  • ISSN: 0007-1250
  • EISSN: 1472-1465
  • URL: /core/journals/the-british-journal-of-psychiatry
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed

Interaction between the BDNF gene Val/66/Met polymorphism and morning cortisol levels as a predictor of depression in adult women

  • J. Herbert (a1), M. Ban (a2), G. W. Brown (a3), T. O. Harris (a3), A. Ogilvie (a4), R. Uher (a5) and T. K. J. Craig (a3)...
Submit a response

eLetters

No eLetters have been published for this article.

×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *