Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-24T03:59:34.749Z Has data issue: false hasContentIssue false

Influence of particulates generated in a CH4 low pressure radiofrequency discharge on dcnegative self bias voltage

Published online by Cambridge University Press:  15 July 2000

V. Massereau-Guilbaud*
Affiliation:
LASEP, Faculté des Sciences, Université d'Orléans, Site de Bourges, rue G. Berger, BP 4043, 18028 Bourges Cedex, France
I. Géraud-Grenier
Affiliation:
LASEP, Faculté des Sciences, Université d'Orléans, Site de Bourges, rue G. Berger, BP 4043, 18028 Bourges Cedex, France
A. Plain
Affiliation:
LASEP, Faculté des Sciences, Université d'Orléans, Site de Bourges, rue G. Berger, BP 4043, 18028 Bourges Cedex, France
Get access

Abstract

The formation and the behavior of particulates have been studied in a pure methane rf plasma (13.56 MHz) for pressures in the range 20−150 Pa. The generated particulates are evidenced using laser light scattering. They are mainly observed at the sheath boundaries where they are suspended in well defined traps. Particulate appearance times at the upper sheath boundary have been determined using the 90° scattered light intensity at 514.5 nm. The appearance time of particulates is sensitive to the working pressure: the higher the pressure, the shorter the appearance time. In our experimental conditions, no particulates are observed in the cloud near the biased electrode for pressures lower than 30 Pa. The negatively charged particulates induce changes in the electrical characteristics of the discharge. The generation and the behavior of particulates are correlated with the time evolutions of the laser beam extinction and of the absolute value of the dc self bias voltage during an experiment.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Selwin, G.S., Singh, J., Benett, R.S., J. Vac. Sci. Technol. A 7, 2758 (1989). CrossRef
Selwin, G.S., McKillop, J.S., Haller, K.L., Wu, J.J., J. Vac. Sci. Technol. A 8, 1726 (1990). CrossRef
Jellum, G.M., Graves, D.B., J. Appl. Phys. 67, 6490 (1990). CrossRef
Smadi, M.M., Kong, G.Y., Carlile, R.N., Beck, S.E., J. Vac. Sci. Tech. B 10, 30 (1992). CrossRef
Allard, L.F., Voelkl, E., Kalakkad, D.S., Datye, A.K., J. Mat. Sci. 29, 5612 (1994). CrossRef
Saito, Y., Matsuda, M., Jpn J. Appl. Phys. 34, 5594 (1995). CrossRef
Plasma Sources Sci. Technol. 3, 239 (1994) and references therein.
Bouchoule, A., Plain, A., Boufendi, L., Blondeau, J.Ph., Laure, C., J. Appl. Phys 70, 1991 (1991). CrossRef
Hayashi, Y., Tachibana, K., Jpn J. App. Phys 33, 4208 (1994). CrossRef
Praburam, G., Goree, J., J. Vac. Sci. Technol. A 12, 3137 (1994). CrossRef
Graud-Grenier, I., Massereau-Guilbaud, V., Plain, A., Eur. Phys. J. AP 8, 53 (1999). CrossRef
C.F. Bohren, D.R. Hauffman, Absorption and Scattering of Light by Small Particles (Wiley, New-York, 1983).
H.C. Van de Hulst, Light Scattering by small Particles (Wiley, New-York, 1981).
Catherine, Y., Couderc, P., Thin Solid Films 144, 265 (1986). CrossRef
A. Rhallabi, Ph.D. thesis, University of Nantes, France, 1992.
Godyak, V.A., Piejak, R.B., Phys. Rev. Lett. 65, 996 (1990). CrossRef
A.A. Howling, Ch. Hollenstein, P.J. Paris, F. Finger, U. Kroll, Proc. of the 20th International Conference on Phenomena in Ionized Gases (XXICPIG), Pisa, Italy, 8-12 July 1991, Vol. 8, p. 1089 (1991).
Winske, D., Jones, M.E., IEEE Trans. Plasma Sci. 23, 188 (1995) CrossRef
Matsoukas, T., Russel, M., J. Appl. Phys. 77, 4285 (1995). CrossRef
Boeuf, J.P., Phys. Rev. A 46, 7910 (1992). CrossRef
Bouchoule, A., Boufendi, L., Plasma Sources Sci. Technol. 3, 292 (1994). CrossRef
Watanabe, Y., Shiratani, M., Fukuzawa, T., Kawasaki, H., Plasma Sources Sci. Technol. 3, 355 (1994). CrossRef