Skip to main content Accessibility help
×
Home

Clumped Isotope Paleothermometry: Principles, Applications, and Challenges

  • Hagit P. Affek (a1)

Abstract

Clumped isotopes geochemistry measures the thermodynamic preference of two heavy, rare, isotopes to bind with each other. This preference is temperature dependent, and is more pronounced at low temperatures. Carbonate clumped isotope values are independent of the carbonate δ13C and δ18O, making them independent of the carbon or oxygen composition of the solution from which the carbonate precipitated. At equilibrium, it is therefore a direct proxy for the temperature in which the carbonate mineral formed. In most cases, carbonate clumped isotopes record the temperature of carbonate formation, irrespective of the mineral form (calcite, aragonite, or bioapatite) or the organism making it. The carbonate formation temperatures obtained from carbonate clumped isotope analysis can be used in conjunction with the δ18O of the same carbonate, to constrain the oxygen isotope composition of the water from which the carbonate has precipitated. There are, however, cases of deviation from thermodynamic equilibrium, where both clumped and oxygen isotopes are offset from the expected values. Such carbonates must be characterized and calibrated separately. For deep-time applications, special care must be paid to the preservation of the original signal, in particular with respect to diagenetic alteration associated with atomic scale diffusion that may be undetectable by common tests for diagenesis.

Copyright

References

Hide All
Affek, H. P., Bar-Matthews, M., Ayalon, A., Matthews, A., and Eiler, J. M. 2008. Glacial/interglacial temperature variations in Soreq cave speleothems as recorded by ‘clumped isotope’ thermometry. Geochimica et Cosmochimica Acta, 72(22):53515360.
Affek, H. P., and Eiler, J. M. 2006. Abundance of mass 47 CO2 in urban air, car exhaust, and human breath. Geochimica et Cosmochimica Acta, 70:112.
Affek, H. P., Xu, X., and Eiler, J. M. 2007. Seasonal and diurnal variations of 13C18O16O in air: Initial observations from Pasadena, CA. Geochimica et Cosmochimica Acta, 71(21):50335043.
Affek, H. P., Zaarur, S., Kluge, T., Matthews, A., Burstyn, Y., Ayalon, A., and Bar-Matthews, M. 2011. Quantifying Kinetic Isotope Effect in Speleothems Through Clumped and Oxygen Isotopes in Laboratory Precipitation Experiments. Abstract PP21D–03 presented at 2011 Fall Meeting, AGU. San Francisco, Calif., 5–9 Dec.
Brand, U., Posenato, R., Came, R., Affek, H., Angiolini, L., Azmy, K., and Farabegoli, W. 2012. The end Permian mass extinction: a rapid volcanic CO2 and CH4-climatic catastrophe. Chemical Geology, 322–3:121144.
Bristow, T. F., Bonifacie, M., Derkowski, A., Eiler, J. M., and Grotzinger, J. P. 2011. A hydrothermal origin for isotopically anomalous cap dolostone cements from south China. Nature, 474:6872.
Came, R. E., Eiler, J. M., Veizer, J., Azmy, K., Brand, U., and Weidman, C. R. 2007. Coupling of surface temperatures and atmospheric CO2 concentrations during the Palaeozoic era. Nature, 449:198202.
Csank, A. Z., Tripati, A. K., Patterson, W. P., Eagle, R. A., Rybczynski, N., Ballantyne, A. P., and Eiler, J. M. 2011. Estimates of Arctic land surface temperatures during the early Pliocene from two novel proxies. Earth and Planetary Science Letters, 304:291299.
Daëron, M., Guo, W., Eiler, J., Genty, D., Blamart, D., Boch, R., Drysdale, R., Maire, R., Wainer, K., and Zanchetta, G. 2011. 13C18O clumping in speleothems: Observations from natural caves and precipitation experiments. Geochimica et Cosmochimica Acta, 75:33033317.
Dennis, K. J., Affek, H. P., Passey, B. H., Schrag, D. P., and Eiler, J. M. 2011. Defining an absolute reference frame for ‘clumped’ isotope studies of CO2 . Geochimica et Cosmochimica Acta, 75:71177131.
Dennis, K. J., and Schrag, D. P. 2010. Clumped isotope thermometry of carbonatites as an indicator of diagenetic alteration. Geochimica et Cosmochimica Acta, 74:41104122.
Douglas, P. M., Ivany, L., Pagani, M., Hollis, C. J., Beu, A. G., and Affek, H. P. 2011. Eocene Southern High Latitude Sea Surface Temperatures: New Constraints from Clumped Isotope Paleothermometry. Abstract PP33B–1924 presented at 2011 Fall Meeting, AGU. San Francisco, Calif., 5–9 Dec.
Eagle, R. A., Schauble, E. A., Tripati, A. K., Tutken, T., Hulbert, R. C., and Eiler, J. M. 2010. Body temperatures of modern and extinct vertebrates from 13C-18O bond abundances in bioapatite. Proceedings of the National Academy of Sciences of the United States of America, 107:1037710382.
Eagle, R. A., Tuetken, T., Martin, T. S., Tripati, A. K., Fricke, H. C., Connely, M., Cifelli, R. L., and Eiler, J. M. 2011. Dinosaur Body Temperatures Determined from Isotopic (13C-18O) Ordering in Fossil Biominerals. Science, 333):443445.
Eiler, J. M. 2007. ‘Clumped-isotope’ geochemistry—the study of naturally-occurring, multiply-substituted isotopologues. Earth and Planetary Science Letters, 262:309327.
Eiler, J. M. 2011. Paleoclimate reconstruction using carbonate clumped isotope thermometry. Quaternary Science Reviews, 30:35753588.
Eiler, J. M., and Schauble, E. 2004. 18O13C16O in Earth's atmosphere. Geochimica et Cosmochimica Acta, 68:47674777.
Elderfield, H., and Ganssen, G. 2000. Past temperature and δ18O of surface ocean waters inferred from foraminiferal Mg/Ca ratios. Nature, 405:442445.
Emiliani, C. 1966. Isotopic paleotemperatures. Science, 154:851857.
Epstein, S., Buchsbaum, R., Lowenstam, H. A., and Urey, H. C. 1953. Revised carbonate-water isotopic temperature scale. Geological Society of America Bulletin, 64:13151325.
Erez, J. 1978. Vital effect on stable-isotope composition seen in foraminifera and coral skeletons. Nature, 273:199202.
Ferry, J. M., Passey, B. H., Vasconcelos, C., and Eiler, J. M. 2011. Formation of dolomite at 40–80 °C in the Latemar carbonate buildup, Dolomites, Italy, from clumped isotope thermometry. Geology, 39:571574.
Finnegan, S., Bergmann, K., Eiler, J. M., Jones, D. S., Fike, D. A., Eisenman, I., Hughes, N. C., Tripati, A. K., and Fischer, W. W. 2011. The Magnitude and Duration of Late Ordovician–Early Silurian Glaciation. Science, 331:903906.
Garzione, C. N., Hoke, G. D., Libarkin, J. C., Withers, S., Macfadden, B., Eiler, J., Ghosh, P., and Mulch, A. 2008. Rise of the Andes. Science, 320:13041307.
Ghosh, P., Adkins, J., Affek, H., Balta, B., Guo, W. F., Schauble, E. A., Schrag, D., and Eiler, J. M. 2006a. 13C-18O bonds in carbonate minerals: A new kind of paleothermometer. Geochimica et Cosmochimica Acta, 70:14391456.
Ghosh, P., Eiler, J., Campana, S. E., and Feeney, R. F. 2007. Calibration of the carbonate ‘clumped isotope’ paleothermometer for otoliths. Geochimica et Cosmochimica Acta, 71:27362744.
Ghosh, P., Garzione, C. N., and Eiler, J. M. 2006b. Rapid uplift of the Altiplano revealed through 13C-18O bonds in paleosol carbonates. Science, 311:511515.
Grossman, E. L., and Ku, T. L. 1986. Oxygen and Carbon isotope fractionation in biogenic aragonite: Temperature effects. Chemical Geology, 59:5974.
Guo, W. 2008. Carbonate Clumped Isotope Thermometry: Application to carbonaceous chondrites and effects of kinetic isotope fractionation. , Caltech, Pasadena, CA.
Guo, W., and Eiler, J. M. 2007. Temperatures of aqueous alteration and evidence for methane generation on the parent bodies of the CM chondrites. Geochimica et Cosmochimica Acta, 71:55655575.
Guo, W. F., Mosenfelder, J. L., Goddard, W. A., and Eiler, J. M. 2009. Isotopic fractionations associated with phosphoric acid digestion of carbonate minerals: Insights from first-principles theoretical modeling and clumped isotope measurements. Geochimica et Cosmochimica Acta, 73:72037225.
Halevy, I., Fischer, W. W., and Eiler, J. M. 2011. Carbonates in the Martian meteorite Allan Hills 84001 formed at 18±4°C in a near-surface aqueous environment. Proceedings of the National Academy of Sciences of the United States of America, 108:1689516899.
Hendy, C. H. 1971. The isotopic geochemistry of speleothems—I. The calculation of the effects of different models of formation on the isotopic composition of speleothems and their applicability as palaeoclimativ indicators. Geochimica et Cosmochimica Acta, 35:801824.
Henkes, G. A., Passey, B. H., Wanamaker, A. D., Grossman, E. L., Ambrose, W. G., and Carroll, M. L. Carbonate clumped isotope compositions of modern marine mollusk and brachiopod shells. submitted to Geochimica et Cosmochimica Acta.
Herbert, T. D. 2003. Alkenone paleotemperature determinations, p. 391431 In Holland, H. D. and Turekian, K. K. (eds.), Treatise on Geochemistry. Elsevier-Pergamon, Oxford.
Huntington, K., Eiler, J., Affek, H., Guo, W., Bonifacie, M., Yeung, L., Thiagarajan, N., Passey, B., Tripati, A., Daeron, M., and Came, R. 2009. Methods and limitations of ‘clumped’ CO2 isotope (Δ47) analysis by gas-source isotope ratio mass spectrometry. Journal of Mass Spectrometry, 44:13181329.
Huntington, K., Wernicke, B., and Eiler, J. 2010. The influence of climate change and uplift on Colorado Plateau paleotemperatures from carbonate clumped-isotope thermometry. Tectonics, 29:TC3005.
Huntington, K. W., Budd, D. A., Wernicke, B. P., and Eiler, J. M. 2011. Use of clumped-isotope thermometry to constrain the crystallization temperature of diagenetic calcite. Journal of Sedimentary Research, 81:656669.
Ivany, L. C., Lohmann, K. C., Hasiuk, F., Blake, D. B., Glass, A., Aronson, R. B., and Moody, R. M. 2008. Eocene climate record of a high southern latitude continental shelf: Seymour Island, Antarctica. Geological Society of America Bulletin, 120:659678.
Keating-Bitonti, C. R., Ivany, L. C., Affek, H. P., Douglas, P., and Samson, S. D. 2011. Warm, not super-hot, temperatures in the early Eocene subtropics. Geology, 39:771774.
Kim, J. H., Schouten, S., Hopmans, E. C., Donner, B., and Damste, J. S. S. 2008. Global sediment core-top calibration of the TEX86 paleothermometer in the ocean. Geochimica et Cosmochimica Acta, 72:11541173.
Kim, S. T., and O'Neil, J. R. 1997. Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates. Geochimica et Cosmochimica Acta, 61(16):34613475.
Kim, S. T., O'Neil, J. R., Hillaire-Marcel, C., and Mucci, A. 2007. Oxygen isotope fractionation between synthetic aragonite and water: Influence of temperature and Mg2+ concentration. Geochimica et Cosmochimica Acta, 71:47044715.
Kluge, T., and Affek, H. P. 2011. Kinetic isotope effect in Bunker cave Holocene stalagmites, identified with Δ47 . In: Climate Change–The Karst Record (KR6 conference, Birmigham, UK), abstract volume, p. 77.
Kluge, T., and Affek, H. P. 2012. Quantifying kinetic fractionation in Bunker cave speleothems using Δ47. Quaternary Science Reviews, 49:8294.
Lea, D. W. 2003. Elemental and Isotopic Proxies of Past Ocean Temperatures, p. 365390 In Holland, H. D., and Turekian, K. K. (eds.), Treatise on Geochmistry. Elsevier-Pergamon, Oxford.
Lear, C. H., Elderfield, H., and Wilson, P. A. 2000. Cenozoic deep-sea temperatures and global ice volumes from Mg/Ca in benthic foraminiferal calcite. Science, 287:269272.
Liu, Z., Pagani, M., Zinniker, D., Deconto, R., Huber, M., Brinkhuis, H., Shah, S. R., Lechie, R. M., and Pearson, A. 2009. Global cooling during the Eocene–Oligocene climate transition. Science, 323:11871190.
Mcconnaughey, T. 1989a. 13C and 18O isotopic disequilibrium in biological carbonates: I. Patterns. Geochimica et Cosmochimica Acta, 53:151162.
Mcconnaughey, T. 1989b. 13C and 18O isotopic disequilibrium in biological carbonates: II. In vitro simulation of kinetic isotope effects. Geochimica et Cosmochimica Acta, 53:163171.
Mccrea, J. M. 1950. On the isotopic chemistry of carbonates and a paleotemperature scale. Journal of Chemical Physics, 18:849857.
Meckler, A. N., Adkins, J. F., Eiler, J. M., and Cobb, K. M. 2009. Constraints from clumped isotope analyses of a stalagmite on maximum tropical temperature change through the late Pleistocene. Geochimica et Cosmochimica Acta, 73:A863A863.
Mickler, P. J., Stern, L. A., and Banner, J. L. 2006. Large kinetic isotope effects in modern speleothems. Geological Society of America Bulletin, 118:6581.
O'Neil, J. R., Clayton, R. N., and Mayeda, T. K. 1969. Oxygen isotope fractionation in divalent metal carbonates. Journal of Chemical Physics, 51:55475558.
Passey, B. H., Levin, N. E., Cerling, T. E., Brown, F. H., and Eiler, J. M. 2010. High-temperature environments of human evolution in East Africa based on bond ordering in paleosol carbonates. Proceedings of the National Academy of Sciences of the United States of America, 107:1124511249.
Quade, J., Breecker, D. O., Daëron, M., and Eiler, J. 2011. The Paleoaltimetry of Tibet: An Isotopic Perspective. American Journal of Science, 311:77115.
Saenger, C. P., Affek, H. P., Felis, T., Thiagarajan, N., Lough, J. M., and Holcomb, M. Carbonate clumped isotope variability in shallow water corals: Temperature dependence and growth-related vital effects. Submitted to Geochimica et Cosmochimica Acta.
Schauble, E. A., Ghosh, P., and Eiler, J. M. 2006. Preferential formation of 13C-18O bonds in carbonate minerals, estimated using first-principles lattice dynamics. Geochimica et Cosmochimica Acta, 70:25102529.
Schmid, T. W. 2011. Clumped isotopes—a new tool for old questions: Case studies on biogenic and inorganic carbonates. Doctoral dissertation, ETH Zurich.
Schouten, S., Hopmans, E., Schefuss, E., and Damste, J. 2002. Distributional variations in marine crenarchaeotal membrane lipids: a new tool for reconstructing ancient sea water temperatures? Earth and Planetary Science Letters, 204:265274.
Suarez, M. B., Passey, B. H., and Kaakinen, A. 2011. Paleosol carbonate multiple isotopologue signature of active East Asian summer monsoons during the late Miocene and Pliocene. Geology, 39:11511154.
Swanson, E. M., Wernicke, B. P., Eiler, J. M., and Losh, S. 2012. Temperatures and fluids on faults based on carbonate clumped-isotope thermometry. American Journal of Science, 312:121.
Thiagarajan, N., Adkins, J., and Eiler, J. 2011. Carbonate clumped isotope thermometry of deep-sea corals and implications for vital effects. Geochimica et Cosmochimica Acta, 75:44164425.
Tripati, A. K., Eagle, R. A., Thiagarajan, N., Gagnon, A. C., Bauch, H., Halloran, P. R., and Eiler, J. M. 2010. 13C-18O isotope signatures and ‘clumped isotope’ thermometry in foraminifera and coccoliths. Geochimica et Cosmochimica Acta, 74:56975717.
Wainer, K., Genty, D., Blamart, D., Daëron, M., Bar-Matthews, M., Vonhof, H., Dublyansky, Y., Pons-Branchu, E., Thomas, L., Van Calsteren, P., Quinif, Y., and Caillon, N. 2011. Speleothem record of the last 180 ka in Villars cave (SW France): Investigation of a large δ18O shift between MIS6 and MIS5. Quaternary Science Reviews, 30:130146.
Wang, Z., Schauble, E. A., and Eiler, J. M. 2004. Equilibrium thermodynamics of multiply-substituted isotopologues of molecular gases. Geochimica et Cosmochimica Acta, 68:47794797.
Weijers, J. W. H., Schouten, S., Van Den Donker, J. C., Hopmans, E. C., and Sinninghe Damsté, J. H. 2007. Environmental controls on bacterial tetraether membrane lipid distributions in soils. Geochimica et Cosmochimica Acta, 71:703713.
Yeung, L. Y., Affek, H. P., Hoag, K. J., Guo, W. F., Wiegel, A. A., Atlas, E. L., Schauffler, S. M., Okumura, M., Boering, K. A., and Eiler, J. M. 2009. Large and unexpected enrichment in stratospheric 16O13C18O and its meridional variation. Proceedings of the National Academy of Sciences of the United States of America, 106:1149611501.
Zaarur, S., Affek, H. P., and Stein, M. 2011a. Clumped isotopes thermometry in Melanopsis shells and its paleoclimate implications. Geophysical Research Abstracts, 13:EGU2011–2291–2, EGU General Assembly 2011.
Zaarur, S., Brandon, M. T., and Affek, H. P. In preparation. A refined calibration of carbonate clumped isotopes theremometer.
Zaarur, S., Olack, G., and Affek, H. P. 2011b. Paleo-environmental implication of clumped isotopes in land snail shells. Geochimica et Cosmochimica Acta, 75:68596869.

Clumped Isotope Paleothermometry: Principles, Applications, and Challenges

  • Hagit P. Affek (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.