Skip to main content
×
×
Home

Isotopic Inferences on Early Ecosystems

  • Andrew H. Knoll (a1) and Donald E. Canfield (a2)
Extract

Long thought to be inaccessible to empirical inquiry, Earth's early biosphere has in recent decades become a central focus of evolutionary and paleobiological research. Knowledge of Precambrian ecosystems comes from three principal sources. The conventional fossil record consists of the compressed and permineralized remains of cyanobacteria, protists and other microorganisms (e.g., Knoll, 1996), complemented by stromatolites and oncolites, the accretionary trace fossils of microbial mat communities (Walter, 1976). Independent inferences about early evolution can be drawn from molecular phylogenies (Pace, 1997). The third principal source of information comprises biogeochemical signatures encrypted in the chemistry of ancient sedimentary rocks. Biomarker molecular fossils and distinctive isotopic compositions record the metabolic activities of organisms not necessarily preserved morphologically (Summons and Walter, 1990). In this paper, we review the inferences about early life and environments that can be drawn from the isotopic records of carbon and sulfur.

Copyright
References
Hide All
Aizenshtat, Z., Stoler, A., Cohen, Y. and Nielsen, H. 1983. The Geochemical sulphur enrichment of recent organic matter by polysulfides in the Solar-Lake, p. 279288. In Bjorøy, M. et al. (eds.) Advances in Organic Geochemistry. Wiley, New York.
Aletkar, W., and Rajagopalan, R. 1990, Ribulose bisphosphatecarboxylase activity in halophilic Archaebacteria. Archives of Microbiology, 153: 169174.
Anderson, T. F., and Pratt, L. M. 1995. Isotopic evidence for the origin of organic sulfur and elemental sulfur in marine sediments, p. 378396. In Vairavamurthy, M. A. and Schoonen, M. A. A. (eds.), Geochemical Transformations of Sedimentary Sulfur. American Chemical Society, Washington DC.
Ayala, F. J. A., Rzhetsky, A., and Ayala, F. 1998. Origin of the metazoan phyla: molecular clocks confirm paleontological estimates. Proceedings of the National Academy of Sciences, USA, 95: 606611.
Bartley, J. K., Pope, M., Knoll, A. H., Semikhatov, M. A., and Petrov, P. Yu. in press. A Vendian-Cambrian boundary succession from the northwestern margin of the Siberian Platform: Stratigraphy, paleontology, chemostratigraphy, and correlation. Geological Magazine.
Bengtson, S. and Zhao, Yue. 1997. Fossilized metazoan embryos from the earliest Cambrian. Science, 277: 16451648.
Berner, R. A., and Canfield, D. E. 1989. A model for atmospheric oxygen over Phanerozoic time. American Journal of Science, 289: 333361.
Berner, R. A., and Westrich, J. T. 1985. Bioturbation and the early diagenesis of carbon and sulfur. American Journal of Science, 285: 193206.
Beukes, N. J., Klein, C., Kaufman, A. J., and Hayes, J. M. 1990. Carbonate petrography, kerogen distribution, and carbon and oxygen isotope variations in an Early Proterozoic transition from limestone to iron-formation deposition, Transvaal Supergroup, South Africa. Economic Geology 85, 663690.
Blair, N. Leu, A., Muñoz, E., Olsen, J., Kwong, E., and Des Marais, D. 1985. Carbon isotopic fractionation in heterotrophic microbial metabolism. Applied and Environmental Microbiology, 50: 9961001.
Brasier, M. D., and Lindsay, J. F. 1998. A billion years of environmental stability and the emergence of eukaryotes: new data from northern Australia. Geology, 26: 555558.
Brune, D. C. 1995. Sulfur compounds as photosynthetic electron donors, p. 847870. In Blankenship, R. E., Madigan, M. T. and Bauer, C. E. (eds.). Anoxygenic Photosynthetic Bacteria. Kluwer, Dordrecht.
Buick, R. 1992. The antiquity of oxygenic photosynthesis: evidence from stromatolites in sulphate-deficient Archaean lakes. Science, 255: 7477.
Buick, R., Des Marais, D., and Knoll, A.H. 1995. Stable isotope compositions of carbonates from the Mesoproterozoic Bangemall Group, Australia: environmental variations, metamorphic effects and stratigraphic trends. Chemical Geology, 123: 153172.
Cameron, E. M. 1982. Sulphate and sulphate reduction in early Precambrian oceans. Nature, 296: 145148.
Cameron, E. M. 1983. Evidence from early Proterozoic anhydrite for sulphur isotopic partitioning in Precambrian oceans. Nature, 304: 5456.
Cameron, E. M., and Hattori, K. 1987. Archean sulphur cycle: evidence from sulphate minerals and isotopically fractionated sulphides in Superior Province, Canada. Chemical Geology (Isotope Geoscience Section), 65: 341358.
Canfield, D. E. 1996. Evolution of the sulfur cycle, p. 2327. In Bottrell, S. H. (ed.), Fourth International Symposium on the Geochemistry of the Earth's Surface, 1996. Univ. of Leeds, Ilkley.
Canfield, D. E., and Raiswell, R. 1991. Carbonate pecipitation and dissolution: its relevance to fossil preservation, p. 411453. In Allison, P. A. and Briggs, D. E. G. (eds.), Taphonomy: Releasing the Data Locked in the Fossil record. Plenum, London.
Canfield, D. E., and Teske, A. 1996. Late Proterozoic rise in atmospheric oxygen concentration inferred from phylogenetic and sulphur-isotope studies. Nature, 382: 127132.
Canfield, D. E., and Thamdrup, B. 1994. The production of 34S-depleted sulfide during bacterial disproportionation of elemental sulfur. Science, 266: 19731975.
Canfield, D. E., Boudreau, B. P., Mucci, A. and Gundersen, J. K. 1998. The early diagenetic formation of organic sulfur in the sediments of Mangrove Lake, Bermuda. Geochemica et Cosmochimica Acta, 62: 767781.
Canfield, D. E., Lyons, T. W. and Raiswell, R. 1996. A model for iron deposition to euxinic Black Sea sediments. American Journal of Science, 296: 818834.
Canfield, D. E., Thamdrup, B., and Fleischer, S. 1998. Isotope fractionation and sulfur metabolism by pure and enrichment cultures of elemental sulfur disproportionating bacteria. Limnology and Oceanography, 43: 253264.
Chambers, L. A., and Trudinger, P. A. 1979. Microbiological fractionation of stable sulfur isotopes: A review and critique. Geomicrobiological Journal, 1: 249293.
Chang, S., Des Marais, D., Mack, R., Miller, S. L., and Strathearn, G. 1983. Prebiotic organic synthesis and the origin of life, 5392. In Schopf, J. W. (ed.), Earth's Earliest Biosphere. Princeton University Press, Princeton.
Claypool, G. E., and Kaplan, I. R. 1974. The origin and distribution of methane in marine sediments, p. 99139. In Natural Gases in Maine Sediments. Plenum, New York.
Claypool, G. E., Holser, W. T., Kaplan, I. R., Sakai, H., and Zak, I. 1980. The age curves of sulfur and oxygen isotopes in marine sulfate and their mutual interpretation. Chemical Geology, 28: 199260.
Cloud, P. E. 1968. Atmospheric and hydrospheric evolution on the primitive Earth. Science, 160: 729736.
Derry, L. A., Kaufman, A. J., and Jacobsen, S.B. 1992. Sedimentary cycling and environmental change in the late Proterozoic: evidence from stable and radiogenic isotopes. Geochimica et Cosmochimica Acta, 56: 13171329.
Des Marais, D. J. 1994. Tectonic control of the crustal organic carbon reservoir during the Precambrian. Chemical Geology, 114: 303314.
Des Marais, D. J. 1997. Isotopic evolution of the biogeochemical carbon cycle during the Proterozoic Eon. Organic Geochemistry, 27: 185193.
Des Marais, D. J., Strauss, H., Summons, R. E., and Hayes, J. M. 1992. Carbon isotopic evidence for the stepwise oxidation of the Proterozoic environment. Nature, 359: 605609.
Devereux, R., and Stahl, D. A. 1993. Phylogeny of sulfate-reducing bacteria and a perspective for analyzing their natural communities, p. 131160. In Odom, J. M. and Singleton, R. Jr. (eds.), The Sulfate-Reducing Bacteria: Contemporary Perspectives. Springer-Verlag, Berlin.
Dix, G. R., Thomson, M. L., Longstaffe, F. J., and McNutt, R. H. 1995. Systematic decrease of high 13C values with burial in late Archaean (2.8 ga) diagenetic dolomite: evidence for methanogenesis from the Crixás greenstone belt, Brazil, Precambrian Research, 70: 253268.
Eiler, J. M., Mojzsis, S. J., and Arrhenius, G., 1997. Carbon isotope evidence for early life. Nature, 386: 665.
Fallick, A. E., and Hamilton, P. J. 1989. The isotopic geochemistry of ocean waters through time. Transactions of the Royal Society of Edinburgh, Earth Sciences, 80: 177181.
Farquhar, G. D., Ehleringer, J. R., and Hubick, K. T. 1989. Carbon isotope discrimination and photosynthesis. Annual Review of Plant Physiology and Plant Molecular Biology, 40: 503537.
Ferdelman, T. G., Church, T. M., and Luther, G. W. I. 1991. Sulfur enrichment of humic substances in a Delaware salt marsh sediment core. Geochimica et Cosmochimica Acta, 55: 979988.
Francois, R. 1987. A study of sulphur enrichment in the humic fraction of marine sediments during early diagenesis. Geochimica et Cosmochimica Acta, 51: 1727.
Fry, B., Cox, J., Gest, H., and Hayes, J. M. 1986. Discrimination between 34S and 32S during bacterial metabolism of inorganic sulfur compounds. Journal of Bacteriology, 165: 328330.
Fry, B., Gest, H., and Hayes, J. M. 1984. Isotope effects associated with the anaerobic oxidation of sulfide by the puple photosynthetic bacterium Chromatium vinosum . FEMS Microbiology Letters, 22: 283287.
Fry, B., Giblin, A., Dornblaser, M. and Peterson, B. 1995. Stable sulfur isotopic compositions of chromium reducible sulfur in lake sediments. In Vairavamurthy, A. and Schoonen, M. A. A. (eds.), Geochemical Transformations of Sedimentary Sulfur. ACS, Washington, DC.
Fuchs, G. 1989. Alternative pathways of autotrophic CO2 fixation, p. 365382. In Schlegel, H. G. and Bowien, B. (eds.), Autotrophic Bacteria. Science Tech, New York.
Fuchs, G., and Stupperich, E. 1985. Evolution of autotrophic CO2 fixation, p. 235249. In Scleifer, K. H. and Stackenbrandt, E. (eds.), Evolution of Prokaryotes, FEMS Symposium 29. Academic Press, New York.
Garrels, R. M., and Lerman, A. 1981. Phanerozoic cycles of sedimentary carbon and sulfur. Proceedings of the National Academy of Sciences, USA, 78: 46524656.
Gelwicks, J. T., Risatti, J. B., and Hayes, J. M. 1994. Carbon isotope effects associated with aceticlastic methanogenesis. Applied and Environmental Microbiology, 60: 467472.
Ghent, E. D., and O'Neil, J. R. 1985. Late Precambrian marbles of unusual carbon isotopic composition, southeastern British Columbia. Canadian Journal of Earth Sciences, 22: 324329.
Goericke, R., Montoya, J. P., and Fry, B. 1994. Physiology of isotopic fractionation in algae and cyanobacteria, p. 187221. In Lajtha, K. and Michener, R. H. (eds.), Stable isotopes in Ecology and Environmental Science. Blackwell, Oxford.
Goldhaber, M. B. and Kaplan, I. R. 1980. Mechanisms of sulfur incorporation and isotope fractionation during early diagenesis in sediments of the Gulf of California. Marine Chemistry, 9: 95143.
Goodwin, A. M., Monster, J., and Thode, H. G. 1976. Carbon and sulfur isotope abundances in Archean iron-formations and early Precambrian life. Economic Geology, 71: 870891.
Habicht, K. S., and Canfield, D. E. 1996. Sulphur isotope fractionation in modern microbial mats and the evolution of the sulphur cycle. Nature, 382: 342343.
Habicht, K. S., and Canfield, D. E. 1997. Sulfur isotope fractionation during bacterial sulfate reduction in organic-rich sediments. Geochimica et Cosmochimica Acta, 61: 53515361.
Habicht, K. S., Canfield., D. E., and Rethmeier, J. in press. Sulfur isotope fractionation during bacterial reduction and disproportionation of thiosulfate and sulfite. Geochimica et Cosmochmica Acta.
Harrison, A. G., and Thode, H. G. 1958. Mechanisms of the bacterial reduction of sulfate from isotope fractiontion studies. Transactions of the Faraday Society, 53: 8492.
Hayes, J. M. 1983. Geochemical evidence bearing on the origin of aerobiosis\ a speculative hypothesis, p. 291301. In Schopf, J. W. (ed.), Earth's Earliest Biosphere. Princeton University Press, Princeton.
Hayes, J. M. 1993. Factors controlling 13C contents of sedimentary compounds: principles and evidence. Marine Geology, 113: 111125.
Hayes, J. M. 1994. Global methanotrophy at the Archean-Proterozoic transition, p. 220236 In Bengtson, S. (ed.), Early Life on Earth. Nobel Symposium 84. Columbia University Press, New York.
Hayes, J. M. 1996. The earliest memories of life on Earth. Nature, 384: 2122.
Hayes, J. M., Lambert, I. B., and Strauss, H. 1992. The sulfur-isotopic record, p. 129132. In Schopf, J. W. and Klein, C. (eds.), The Proterozoic Biosphere. Cambridge University Press, Cambridge.
Hayes, J. M., Takigiku, R., Ocampo, R., Callot, H. J., and Albrecht, P. 1987. Isotopic compositions and probable origins of organic molecules in the Eocene Messel shale. Nature, 329, 4851.
Hoffman, P. F., Kaufman, A. J., and Halverson, G. P. 1998. Comings and Goings of Global Glaciations on a Neoproterozoic Tropical Platform in Namibia. Geology, 8: 18.
Holland, H. D., and Beukes, N. J. 1990. A paleoweathering profile from Griqualand West, South Africa: evidence for a dramatic rise in atmospheric oxygen between 2.2 and 1.9 bybp. American Journal of Science, 290-A: 134.
Holland, H. D., and Karhu, J. A. 1996. Carbon isotopes and the rise of atmospheric oxygen. Geology, 24: 867870.
Holser, W. T., Schidlowski, M., Mackenzie, F. T., and Maynard, J. B. 1988. Geochemical cycles of carbon and sulfur, p. 105173. In Gregor, C. B., Garrels, R. M., Mackenzie, F. T. and Maynard, J. B. (eds.), Chemical Cycles in the Evolution of the Earth. Wiley, New York.
Irwin, H., Curtis, C., and Coleman, M. 1977. Isotopic evidence for source of diagenetic carbonates formed during burial of organic-rich sediments. Nature, 269: 209213.
Jørgensen, B. B. 1977. The sulfur cycle of a coastal marine sediment (Limfjorden, Denmark). Limnology and Oceanography, 22: 814832.
Jørgensen, B. B. 1982. Mineralization of organic matter in the sea bed –the role of sulphate reduction. Nature, 296: 643645.
Kah, L. C., Sherman, A. G., Narbonne, G. M., Knoll, A. H., and Kaufman, A. J. in press. 13C stratigraphy of the Proterozoic Bylot Supergroup, Baffin Island, Canada: Implications for regional stratigraphic correlations. Canadian Journal of Earth Sciences.
Kaplan, I.R., and Nissenbaum, A. 1966. Anomalous carbon isotope ratios in nonvolatile organic material. Science, 153: 744745.
Kaplan, I.R., and Rittenberg, S. C. 1964. Microbiological fractionation of sulphur isotopes. Journal of General Microbiology, 34: 195212.
Karhu, J.A., 1993, Paleoproterozoic evolution of the carbon isotope ratios of sedimentary carbonates in the Fennoscandian Shield. Geological Survey of Finland Bulletin, 371: 187.
Kaufman, A.J., 1997, An ice age in the tropics. Nature, 386: 227228.
Kaufman, A.J., and Knoll, A. H. 1995. Neoproterozoic variations in the C-isotopic composition of seawater: stratigraphic and biogeochemical implications. Precambrian Research, 73: 2749.
Kaufman, A.J., Knoll, A. H., and Narbonne, G. M. 1997. Isotopes, ice ages, and Neoproterozoic Earth history. Proceedings of the National Academy of Sciences, USA, 94: 66006605.
Kemp, A. L. W., and Thode, H. G. 1968. The mechanism of the bacterial reduction of sulphate and of sulphite from isotope fractionation studies. Geochimica et Cosmochimica Acta, 32: 7191.
Kimura, H., Matsumoto, R., Kakuwa, Y., Hamdi, B., and Zibaseresht, H. 1997. the Vendian-Cambrian 13C record, North Iran: evidence for overturning of the ocean before the Cambrian explosion. Earth and Planetary Science Letters, 147: E1E7.
Knoll, A. H. 1991. End of the Proterozoic Eon. Scientific American, 265(4): 6473.
Knoll, A. H. 1992a. Biological and biogeochemical preludes to the Ediacaran radiation, p. 5384. In Lipps, J. H. and Signor, P. W. (eds.), Origin and Early Evolution of the Metazoa. Plenum, New York.
Knoll, A. H. 1992b. The early evolution of eukaryotes: a geological perspective. Science, 256: 622627.
Knoll, A. H. 1996. Archean and Proterozoic paleontology, p. 5180. In Jansonius, J. and McGregor, D. C. (eds.), Palynology: Principles and Applications. American Association of Stratigraphic Palynologists, Tulsa.
Knoll, A. H. and Barghoorn, E. S. 1977. Archean microfossils showing cell division from the Swaziland System, South Africa. Science, 198: 396398.
Knoll, A. H., Bambach, R. K., Canfield, D. E., and Grotzinger, J. P. 1996. Comparative Earth history and Late Permian mass extinction. Science, 273: 452457.
Knoll, A. H., Hayes, J. M., Kaufman, A. J., Swett, K., and Lambert, I. B., 1986. Secular variation in carbon isotope ratios from Upper Proterozoic successions of Svalbard and East Greenland. Nature, 321: 832838.
Knoll, A. H., Kaufman, A. J., and Semikhatov, S. A. 1995. The Proterozoic carbon isotope record: Mesoproterozoic carbonates from Siberia. American Journal of Science, 295: 823850.
Lambert, I. R., and Donnelly, T. H. 1990. The palaeoenvironmental significance of trends in sulphur isotope compositions in the Precambrian: a critical review, p. 261268 In Herbert, H. K. and Ho, S. E. (eds.), Stable Isotopes and Fluid Processes in Mineralization. University of Western Australia, Perth.
Lambert, I. R., Beukes, N. J., Klein, C., and Veizer, J. 1992. Proterozoic mineral deposits through time, p. 5962 In Schopf, J. W. and Klein, C. (eds), The Proterozoic Biosphere. Cambridge University Press, Cambridge, UK.
Lambert, I. R., Donnelly, T. H., Dunlop, J. S. R., and Groves, D. I. 1978. Stable isotope compositions of early Archean sulphate deposits of probable evaporite and volcanogenic origins. Nature, 276: 808810.
Logan, G. A., Hayes, J. M., Hieshima, G. B., and Summons, R. E. 1995. Terminal Proterozoic reorganization of biogeochemical cycles. Nature, 376: 5356.
Logan, G. A., Summons, R. E., and Hayes, J. M. 1997. An isotopic biogeochemical study of Neoproterozoic and Early Cambrian sediments from the Centralian Superbasin, Australia. Geochimica et Cosmochimica Acta, 61: 53915409.
Lowe, D. R. 1994. Abiological origin of desrcibed stromatolites older than 3.2 Ga. Geology, 22:387390.
Margulis, L., and Sagan, D. 1997. Microcosmos. University of California Press, Berkeley, 390 p.
McKay, C. P., and Hartman, H. 1991. Hydrogen peroxide and the evolution of oxygenic photosynthesis. Origins of Life, 21: 157164.
Migdisov, A. A., Cherkovskiy, S. L. and Grinenko, V. A. 1974. The effects of formation conditions on the sulfur isotopes of aquatic sediments. Geochemistry International, 10: 10281047.
Mojzsis, S. J., Arrhenius, G., McKeegan, K. D., Harrison, T. M., Nutman, A.P., and Friend, C. R. L. 1996. Evidence for life on Earth before 3,800 million years ago. Nature, 384: 5559.
Muramoto, J. A., Honjo, S., Fry, B., Hay, B. J., Howarth, R. W., and Cisne, J. L. 1991. Sulfur, iron and organic carbon fluxes in the Black Sea: sulfur isotopic evidence for origin of sulfur fluxes. Deep-Sea Research, 38: S1151S1187.
Nursall, J. R. 1959. Oxygen as a prerequisite to the origin of the metazoa. Nature, 183: 11701172.
Ohmoto, H., and Rye, R. O. 1979. Isotopes of sulfur and carbon, p. 509567. In Barnes, H. L. (ed.), Geochemistry of Hydrothermal Ore Deposits. Wiley, New York.
Ohmoto, H., Kakegawa, T. and Lowe, D. R. 1993. 3.4-billion-year-old biogenic pyrites from Barberton, South Africa: Sulfur isotope evidence. Science, 262: 555557.
Pace, N.R. 1997. A molecular view of microbial diversity and the biosphere. Science, 276: 734740.
Perry, E. C., and Ahmad, S. N. 1977. Carbon isotope composition of graphite and carbonate minerals from 3.8-Ae metamorphosed sediments, Isukasia, Greenland. Earth and Planetary Science Letters, 36: 280284.
Pflug, H. D. 1966. Structured organic remains from the Fig Tree Series of the Barberton Mountain Land. University of the Witwatersrand Economic Geology Research Unit, Information Circular, 29: 114.
Phillipe, H., and Adoutte, A. 1995. How reliable is our current view of eukaryotic phylogeny? European Journal of Protistology, 31: 1733.
Raven, J. 1994. Carbon fixation and carbon availability in marine phytoplankton. Photosynthesis Research, 39: 259273.
Ross, G. M., Bloch, J. D., and Krouse, H. R. 1995. Neoproterozoic strata of the southern Canadian Corillera and the isotopic evolution of seawater sulfate. Precambrian Research, 73: 7199.
Runnegar, B., 1982, A molecular-clock date for the origin of the animal phyla. Lethaia, 14: 199205.
Schidlowski, M. 1993. The initiation of biological processes on Earth: Summary of the empirical evidence, p. 639655 In Engel, M. H. and Macko, S. A. (eds.), Organic Geochemistry. Plenum, New York.
Schidlowski, M., and Aharon, P. 1992. Carbon cycle and carbon isotopic record: geochemical impact of life over 3.8 Ga of Earth history, p. 147175. In Schidlowski, M. et al. (eds.), Early Organic Evolution: Implications for Mineral and Energy Resources. Springer-Verlag, Heidelberg.
Schidlowski, M., Appel, P. W. L., Eichmann, R., and Junge, C. E. 1979. Carbon isotope geochemistry of the 3.7×109-yr-old Isua Sediments, West Greenland: Implications for the Archaean carbon and oxygen cycles. Geochimica et Cosmochimica Acta, 43: 189199.
Schidlowski, M., Eichman, R., and Junge, C. E. 1976. Carbon isotope geochemistry of the Precambrian Lomagundi carbonate province, Rhodesia. Geochimica et Cosmochimica Acta, 40: 449455.
Schidlowski, M., Hayes, J. M., and Kaplan, I. R. 1983. Isotopic inferences of ancient biochemistries: carbon, sulufr, hydrogen, and nitrogen, p. 149186. In Schoipf, J. W. (ed.), Earth's Earliest Biosphere. Princeton University Press, Princeton.
Schoell, M., and Wellmer, F.-W. 1981. Anomalous 13C depletion in early Precambrian graphites from Superior Province, Canada. Nature, 290: 696699.
Schopf, J. W. (Ed.) 1983. Earth's Earliest Biosphere: Its Origin and Evolution. Princeton University Press, Princeton, N.J., 543 p.
Schopf, J. W. (Ed.) 1993. Microfossils of the Early Archean Apex Chert: New evidence of the antiquity of life. Science, 260: 640646.
Schopf, J. W., and Barghoorn, E. S. 1967. Alga-like fossils from the Early Precambrian of South Africa. Science, 156: 508512.
Shanks, W. C. III, and Seyfried, W. E. Jr. 1987. Stable isotope studies of vent fluids and chimney minerals, southern Juan de Fuca Ridge: sodium metasomatism and seawater sulfate reduction. Journal of Geophysical Research, 92: 11,387–11,399.
Sogin, M. L. 1994. The origin of eukaryotes and evolution into major kingdoms, p. 181192. In Bengtson, S. (ed.), Early Life on Earth. Nobel Symposium 84. Columbia University Press, New York.
Sørensen, J., Christensen, D., and Jørgensen, B. B. 1981. Volatile fatty acids and hydrogen as substrates for sulfate-reducing bacteria in anaerobic marine sediment. Applied and Environmental Microbiology, 42: 511.
Stackebrandt, E., Stahl, D. A., and Devereux, R. 1995. Taxonomic relationships, p. 4987. In Barton, L. L. (ed.), Sulfate-Reducing Bacteria. Plenum, New York.
Stetter, K. O. 1996. Hyperthermophiles in the History of Life, p. 110. In Bock, G. R. and Goode, J. A. (eds.), Evolution of Hydrothermal Ecosystems on Earth (and Mars?). Wiley, New York.
Strauss, H. 1993. The sulfur isotopic record of Precambrian sulfates: new data and a critical evaluation of the existing record. Precambrain Research, 63: 225246.
Strauss, H., and Moore, T. 1992. Abundances and isotopic compositions of carbon and sulfur species in whole rock and kerogen samples, p. 709798. In Schopf, J. W. and Klein, C. (eds.), The Proterozoic Biosphere. Cambridge University Press, Cambridge.
Summons, R. E., and Walter, M. R. 1990. Molecular fossils and microfossils of prokaryotes and protists from Proterozoic sediments. American Journal of Science, 290A: 212244.
Veizer, J., Hoefs, J., Lowe, D. R., and Thurston, P. C. 1989. Geochemistry of Precambrian carbonates: II. Archean greenstone belts and Archean sea water. Geochimica et Cosmochimica Acta, 53: 859871.
Walsh, M. M. 1992. Microfossils and possible microfossils from the Early Archean Onverwacht Group, Barberton Mountain Land, South Africa. Precambrian Research, 54: 271293.
Walter, M. R. (ed.) 1976. Stromatolites. Elsevier, Amsterdam, 790 p.
Wray, G. A., Levinton, J. S., and Shapiro, L. H. 1996. Molecular evidence for deep Precambrian divergences among metazoan phyla. Science, 270: 13191325.
Wickham, S. M., and Peters, M. T. 1993. High 13C Neoproterozoic carbonate rocks in western North America. Geology, 21: 165168.
Woese, C.R. 1987. Bacterial evolution. Microbiological Reviews, 51: 221271.
Woese, C.R., Kandler, O., and Wheeler, M. 1990. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proceedings of the National Academy of Sciences, USA, 87: 45764579.
Woodruff, L. G., and Shanks, W. C. III. 1987. Sulfur isotope study of chimney minerals and vent fluids from 21°N, East Pacific Rise: hydrothermal sulfur sources and disequilibrium sulfate reduction. Journal of Geophysical Research, 93: 45624572.
Xiao, S.Y., Zhang, A. H. and Knoll, . 1998. Three-dimensional preservation of algae and animal embryos in a Neoproterozoic phosphorite. Nature, 391: 553558.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

The Paleontological Society Papers
  • ISSN: 1089-3326
  • EISSN: 2399-7575
  • URL: /core/journals/the-paleontological-society-papers
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 2 *
Loading metrics...

Abstract views

Total abstract views: 88 *
Loading metrics...

* Views captured on Cambridge Core between 21st July 2017 - 17th July 2018. This data will be updated every 24 hours.