Skip to main content
×
×
Home

Objective Monitoring of mTOR Inhibitor Therapy by Three-Dimensional Facial Analysis

  • Gareth S. Baynam (a1) (a2), Mark Walters (a3), Hugh Dawkins (a4) (a5), Matthew Bellgard (a5), Anne R. Halbert (a6) and Peter Claes (a7)...
Abstract

With advances in therapeutics for rare, genetic and syndromic diseases, there is an increasing need for objective assessments of phenotypic endpoints. These assessments will preferentially be high precision, non-invasive, non-irradiating, and relatively inexpensive and portable. We report a case of a child with an extensive lymphatic vascular malformation of the head and neck, treated with an mammalian target of Rapamycin (mTOR) inhibitor that was assessed using 3D facial analysis. This case illustrates that this technology is prospectively a cost-effective modality for treatment monitoring, and it supports that it may also be used for novel explorations of disease biology for conditions associated with disturbances in the mTOR, and interrelated, pathways.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Objective Monitoring of mTOR Inhibitor Therapy by Three-Dimensional Facial Analysis
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Objective Monitoring of mTOR Inhibitor Therapy by Three-Dimensional Facial Analysis
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Objective Monitoring of mTOR Inhibitor Therapy by Three-Dimensional Facial Analysis
      Available formats
      ×
Copyright
Corresponding author
address for correspondence: Gareth S. Baynam, Genetic Services of Western Australia, Level 3 Agnes Walsh House, King Edward Memorial Hospital 6008 WA, Australia. E-mail: Gareth.Baynam@health.wa.gov.au
References
Hide All
Baynam, G., Walters, M., Claes, P., Kung, S., LeSouef, P., Dawkins, H., . . . Goldblatt, J. (2013). The facial evolution: Looking backward and moving forward. Human Mutation, 34, 1422.
Cargnello, M., & Roux, P. P. (2011). Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiology and Molecular Biology Reviews, 75, 5083.
Claes, P., Daniel, K., Walters, M., Clement, J. G., Vandermeulen, D., & Suetens, P. (2012a). Dysmorphometrics: The modelling of morphological anomalies. Theoretical Biology and Medical Modelling, 9, 139.
Claes, P., Walters, M., & Clement, J. (2012b). Improved facial outcome assessment using a 3D anthropometric mask. International Journal of Oral and Maxillofacial Surgery, 41, 324330.
Claes, P., Walters, M., Gillett, D., Vandermeulen, D., Clement, J., & Suetens, P. (2013). The normal-equivalent: A patient-specific assessment of facial harmony. International Journal of Oral and Maxillofacial Surgery (epub ahead of print, 2013).
Crino, P. B. (2011). mTOR: A pathogenic signaling pathway in developmental brain malformations. Trends in Molecular Medicine, 17, 734742.
Eifert, S., Villavicencio, J. L., Kao, T. C., Taute, B. M., & Rich, N. M. (2000). Prevalence of deep venous anomalies in congenital vascular malformations of venous predominance. Journal of Vascular Surgery, 31, 462471.
Foster, R. S., Bint, L. J., & Halbert, A. R. (2012). Topical 0.1% rapamycin for angiofibromas in paediatric patients with tuberous sclerosis: A pilot study of four patients. Australasian Journal of Dermatology, 53, 5256.
Hammill, A. M., Wentzel, M., Gupta, A., Nelson, S., Lucky, A., Elluru, R., . . . Adams, D M. (2011). Sirolimus for the treatment of complicated vascular anomalies in children. Pediatric Blood & Cancer, 57, 10181024.
Hammond, P., Forster-Gibson, C., Chudley, A. E., Allanson, J. E., Hutton, T. J., Farrell, S. A., . . . Lewis, M. E. (2008). Face–brain asymmetry in autism spectrum disorders. Molecular Psychiatry, 13, 614623.
Jozwiak, S., Stein, K., & Kotulska, K. (2012). Everolimus (RAD001): First systemic treatment for subependymal giant cell astrocytoma associated with tuberous sclerosis complex. Future Oncology, 8, 15151523.
Kung, S., Walters, M., Claes, P., Goldblatt, J., Le Souef, P., & Baynam, G. (2013). A dysmorphometric analysis to investigate facial phenotypic signatures as a foundation for non-invasive monitoring of lysosomal storage disorders. JIMD Reports, 8, 3139.
Leopold, D. A., & Rhodes, G. (2010). A comparative view of face perception. Journal of Comparative Psychology, 124, 233251.
Mosey, P. (2004, December). Report of a WHO meeting on International Collaborative Research on Craniofacial Anomalies. Paper presented at the Addressing Global Challenges of Craniofacial Anomalies, Geneva, Switzerland.
Phung, T. L., Ziv, K., Dabydeen, D., Eyiah-Mensah, G., Riveros, M., Perruzzi, C., . . . Benjamin, L. E. (2006). Pathological angiogenesis is induced by sustained Akt signaling and inhibited by rapamycin. Cancer Cell, 10, 159170.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Twin Research and Human Genetics
  • ISSN: 1832-4274
  • EISSN: 1839-2628
  • URL: /core/journals/twin-research-and-human-genetics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed