Skip to main content
×
×
Home

Whole-Exome Sequencing in Nine Monozygotic Discordant Twins

  • Rong Zhang (a1), Holger Thiele (a2), Peter Bartmann (a3), Alina C. Hilger (a1), Christoph Berg (a4) (a5), Ulrike Herberg (a6), Dietrich Klingmüller (a7), Peter Nürnberg (a2), Michael Ludwig (a8) and Heiko Reutter (a1) (a3)...
Abstract

By definition, monozygotic (MZ) twins carry an identical set of genetic information. The observation of early post-twinning mutational events was shown to cause phenotypic discordance among MZ twin pairs. These mutational events comprise genomic alterations at different scales, ranging from single nucleotide changes to larger copy-number variations (CNVs) of varying sizes, as well as epigenetic changes. Here, we performed whole-exome sequencing (WES) in nine discordant MZ twins to identify somatic mutational events in the affected twin that might exert a dominant negative effect. Five of these MZ twin pairs were discordant for congenital heart defects (CHD), two for endocrine disorders, one for omphalocele, and one for congenital diaphragmatic hernia (CDH). Analysis of WES data from all nine MZ twin pairs using the de novo probability tool DeNovoGear detected only one apparent de novo variation in TMPRSS13 in one of the CHD-affected twins. Analysis of WES data from all nine MZ twin pairs by using standard filter criteria without the de novo probability tool DeNovoGear revealed a total of 6,657 variations in which both the twin pairs differed. After filtering for variations only present in the affected twins and absent in in-house controls, 722 variations remained. Visual inspection for read quality decreased this number to 12, present only in the affected twin. However, Sanger sequencing of the overall 13 variations failed to confirm the variation in the affected twin. These results suggest that somatic mutational events in coding regions do not seem to play a major role in the phenotypic expression of MZ discordant twin pairs.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Whole-Exome Sequencing in Nine Monozygotic Discordant Twins
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Whole-Exome Sequencing in Nine Monozygotic Discordant Twins
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Whole-Exome Sequencing in Nine Monozygotic Discordant Twins
      Available formats
      ×
Copyright
Corresponding author
address for correspondence: Heiko Reutter, Department of Neonatology and Pediatric Intensive Care & Institute of Human Genetics, University of Bonn, Sigmund-Freud-Str. 25, D-53127 Bonn, Germany. E-mail: reutter@uni-bonn.de
References
Hide All
Abdellaoui A., Ehli E. A., Hottenga J.-J., Weber Z., Mbarek H., Willemsen G., . . . Boomsma D. I. (2015). CNV concordance in 1,097 MZ twin pairs. Twin Research and Human Genetics, 18, 112.
Baranzini S. E., Mudge J., van Velkinburgh J. C., Khankhanian P., Khrebtukova I., Miller N. A., . . . Kingsmore S. F. (2010). Genome, epigenome and RNA sequences of monozygotic twins discordant for multiple sclerosis. Nature, 464, 13511356.
Baudisch F., Draaken M., Bartels E., Schmiedeke E., Bagci S., Bartmann P., . . . Reutter H. (2013). CNV analysis in monozygotic twin pairs discordant for urorectal malformations. Twin Research and Human Genetics, 16, 802807.
Breckpot J., Thienpont B., Gewillig M., Allegaert K., Vermeesch J. R., & Devriendt K. (2012). Differences in copy number variation between discordant monozygotic twins as a model for exploring chromosomal mosaicism in congenital heart defects. Molecular Syndromology, 2, 8187.
Bruder C. E. G., Piotrowski A., Gijsbers A. A. C. J., Andersson R., Erickson S., Diaz de Ståhl T., . . . Dumanski J.P. (2008). Phenotypically concordant and discordant monozygotic twins display different DNA copy-number-variation profiles. The American Journal of Human Genetics, 82, 763771.
Cogulu O., Pariltay E., Koroglu O. A., Aykut A., Ozyurek R., Levent E., . . . Ozkinay F. (2013). Genome wide analysis in a discordant monozygotic twin with caudal appendage and multiple congenital anomalies. Genetic Counseling, 24, 8591.
Dal G. M., Ergüner B., Sağiroğlu M. S., Yüksel B., Onat O. E., Alkan C., & Özçelik T. (2014). Early postzygotic mutations contribute to de novo variation in a healthy monozygotic twin pair. Journal of Medical Genetics, 51, 455459.
Eaves L. J., Last K. A., Young P. A. & Martin N. G. (1978). Model-fitting approaches to the analysis of human behavior. Heredity, 41, 249320.
Ehli E. A., Abdellaoui A., Hu Y., Hottenga J. J., Kattenberg M., van Beijsterveldt T., . . . Davies G. E. (2012). De novo and inherited CNVs in MZ twin pairs selected for discordance and concordance on attention problems. European Journal of Human Genetics, 20, 10371043.
Gervin K., Vigeland M. D., Mattingsdal M., Hammerø M., Nygård H., Olsen A. O., . . . Lyle R. (2012). DNA methylation and gene expression changes in monozygotic twins discordant for psoriasis: Identification of epigenetically dysregulated genes. PLoS Genetics, 8, e1002454.
Helderman-van den Enden A. T., Maaswinkel-Mooij P. D., Hoogendoorn E., Willemsen R., Maat-Kievit J. A., Losekoot M., & Oostra B. A. (1999). Monozygotic twin brothers with the fragile X syndrome: Different CGG repeats and different mental capacities. Journal of Medical Genetics, 36, 253257.
Jamuar S. S., Lam A. N., Kircher M., D’Gama A. M., Wang J., Barry B. J., . . . Walsh C. A. (2014). Somatic mutations in cerebral cortical malformations. New England Journal of Medicine, 371, 733743.
Jin M., Zhu S., Hu P., Liu D., Li Q., Li Z., . . . Chen X. (2014). Genomic and epigenomic analyses of monozygotic twins discordant for congenital renal agenesis. American Journal of Kidney Diseases, 64, 119122.
Kaminsky Z. A., Tang T., Wang S.-C., Ptak C., Oh G. H. T., Wong A. H. C., . . . Petronis A. (2009). DNA methylation profiles in monozygotic and dizygotic twins. Nature Genetics, 41, 240245.
Kondo S., Schutte B. C., Richardson R. J., Bjork B. C., Knight A. S., Watanabe Y., . . . Gershwin M. E. (2002). Mutations in IRF6 cause Van der Woude and popliteal pterygium syndromes. Nature Genetics, 32, 285289.
Kruyer H., Mila M., Glover G., Carbonell P., Ballesta F., & Estivill X. (1994). Fragile X syndrome and the (CGG)n mutation: Two families with discordant MZ twins. American Journal of Human Genetics, 54, 437442.
Lindhurst M. J., Sapp J. C., Teer J. K., Johnston J. J., Finn E. M., . . . Biesecker L. G. (2011). A mosaic activating mutation in AKT1 associated with the proteus syndrome. New England Journal of Medicine, 365, 611619.
Magne F., Serpa R., Van Vliet G., Samuels M. E., & Deladoëy J. (2015). Somatic mutations are not observed by exome sequencing of lymphocyte DNA from monozygotic twins discordant for congenital hypothyroidism due to thyroid dysgenesis. Hormone Research in Paediatrics, 83, 7985.
Manolio T. A., Collins F. S., Cox N. J., Goldstein D. B., Hindorff L. A., Hunter D. J., . . . Visscher P. M. (2009). Finding the missing heritability of complex diseases. Nature, 461, 747753.
Meltz Steinberg K., Nicholas T. J., Koboldt D. C., Yu B., Mardis E., & Pamphlett R. (2015). Whole genome analyses reveal no pathogenetic single nucleotide or structural differences between monozygotic twins discordant for amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis and Frontotemporal, 16, 385392.
Mitchell M. M., Lleo A., Zammataro L., Mayo M. J., Invernizzi P., Bach N., . . . LaSalle J. M. (2011). Epigenetic investigation of variably X chromosome inactivated genes in monozygotic female twins discordant for primary biliary cirrhosis. Epigenetics, 6, 95102.
O’Huallachain M., Karczewski K. J., Weissman S. M., Urban A. E., & Snyder M. P. (2012). Extensive genetic variation in somatic human tissues. Proceedings of the National Academy of Sciences, USA, 109, 1801818023.
O’Huallachain M., Weissman S. M., & Snyder M. P. (2013). The variable somatic genome. Cell Cycle, 12, 56.
Ono O., Imamura A., Tasaki S., Kurotaki N., Ozawa H., Yoshiura K., & Okazaki Y. (2010). Failure to confirm CNVs as of aetiological significance in twin pairs discordant for schizophrenia. Twin Research and Human Genetics, 13, 455460.
Petersen B. S., Spehlmann M. E., Raedler A., Stade B., Thomsen I., Rabionet R., . . . Franke A. (2014). Whole genome and exome sequencing of monozygotic twins discordant for Crohn's disease. BMC Genomics, 15, 564.
Selmi C., Cavaciocchi F., Lleo A., Cheroni C., De Francesco R., Lombardi S. A., . . . Gerrshwin M. E. (2014). Genome-wide analysis of DNA methylation, copy number variation, and gene expression in monozygotic twins discordant for primary biliary cirrhosis. Frontiers in Immunology, 5, 128.
Solomon B. D., Pineda-Alvarez D. E., Hadley D. W., Hansen N. F., Kamat A., Donovan F. X., & NISC Comparative Sequencing Program. (2013). Exome sequencing and high-density microarray testing in monozygotic twin pairs discordant for features of VACTERL association. Molecular Syndromology, 4, 2731.
Spencer D. H., Tyagi M., Vallania F., Bredemeyer A. J., Pfeifer J. D., Mitra R. D. & Duncavage E. J. (2014). Performance of common analysis methods for detecting low-frequency single nucleotide variants in targeted next-generation sequence data. The Journal of Molecular Diagnostics, 16, 7588.
Taylor D. M., Thum M. Y., & Abdalla H. (2008). Dichorionic triamniotic triplet pregnancy with monozygotic twins discordant for trisomy 13 after preimplantation genetic screening: Case report. Fertility and Sterility, 90, 2017, e5–e9.
Tsiatis A. C., Norris-Kirby A., Rich R. G., Hafez M. J., Gocke C. D., Eshleman J. R., & Murphy K. M. (2010). Comparison of Sanger sequencing, pyrosequencing, and melting curve analysis for the detection of KRAS mutations. Diagnostic and clinical implications. The Journal of Molecular Diagnostics, 12, 425432.
Van Dongen J., Slagboom P. E., Draisma H. H. M., Martin N. G., & Boomsma D. I. (2012). The continuing value of twin studies in the omics era. Nature Reviews Genetics, 13, 640653.
Wei T., Sun H., Hu B., Yang J., Qiao C., & Yan M. (2015). Exome sequencing and epigenetic analysis of twins who are discordant for congenital cataract. Twin Research and Human Genetics, 18, 393398.
Ye K., Beekman M., Lameijer E.-W., Zhang Y., Moed M. H., van den Akker E. B., . . . Slagboom P. E. (2013). Aging as accelerated accumulation of somatic variants: Whole-genome sequencing of centenarian and middle-aged monozygotic twin pairs. Twin Research and Human Genetics, 16, 10261032.
Zwijnenburg P. J., Meijers-Heijboer H., & Boomsma D. I. (2010). Identical but not the same: The value of discordant monozygotic twins in genetic research. American Journal of Medical Genetics B Neuropsychiatric Genetics, 153B, 11341149.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Twin Research and Human Genetics
  • ISSN: 1832-4274
  • EISSN: 1839-2628
  • URL: /core/journals/twin-research-and-human-genetics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Type Description Title
WORD
Supplementary materials

Zhang supplementary material
Zhang supplementary material 1

 Word (549 KB)
549 KB

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 41
Total number of PDF views: 305 *
Loading metrics...

Abstract views

Total abstract views: 610 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 23rd February 2018. This data will be updated every 24 hours.