Skip to main content Accessibility help

Diurnal rhythm of cone opsin expression in the teleost fish Haplochromis burtoni



The biochemical and morphological specializations of rod and cone photoreceptors reflect their roles in sight. The apoprotein opsin, which converts photons into chemical signals, functions at one end of these highly polarized cells, in the outer segment. Previous work has shown that the mRNA of rod opsin, the opsin specific to rods, is renewed in the outer segment with a diurnal rhythm in the retina of the teleost fish Haplochromis burtoni. Here we show that in the same species, all three cone opsin mRNAs (blue, green, and red) also have a diurnal rhythm of expression. Quantitative real-time polymerase chain reaction (PCR) with primer pairs specific for the cone photoreceptor opsin subtypes was used to detect opsin mRNA abundance in animals sacrificed at 3-h intervals around the clock. All three cone opsins were expressed with diurnal rhythms similar to each other but out of phase with the rod opsin rhythm. Specifically, cone opsin expression occurs at a higher level near the onset of the dark period, when cones are not used for vision. Finally, we found that the rhythm of cone opsin expression in fish appears to be light dependent, as prolonged darkness changes normal diurnal expression patterns.


Corresponding author

Address correspondence and reprint requests to: Russell D. Fernald, Biological Sciences, Gilbert Hall, Stanford University, Stanford, CA 94305, USA. E-mail:


Hide All


Besharse, J.C., Hollyfield, J.G., & Rayborn, M.E. (1977). Turnover of rod photoreceptor outer segments. II. Membrane addition and loss in relationship to light. Journal of Cell Biology 75, 507527.
Burnside, B. (1976). Microtubules and actin filaments in teleost visual cone elongation and contraction. Journal of Supramolecular Structure 5, 257275.
Cahill, G.M. & Besharse, J.C. (1993). Circadian clock functions localized in xenopus retinal photoreceptors. Neuron 10, 573577.
Carleton, K.L. & Kocher, T.D. (2001). Cone opsin genes of african cichlid fishes: Tuning spectral sensitivity by differential gene expression. Molecular Biology and Evolution 18, 15401550.
Chiu, J.F., Mack, A.F., & Fernald, R.D. (1995). Daily rhythm of cell proliferation in the teleost retina. Brain Research 673, 119125.
Fernald, R.D. (1977). Quantitative behavioral observations of Haplochromis burtoni under semi-natural conditions. Animal Behavior 25, 643653.
Fernald, R.D. (1990). Haplochromis burtoni: A case study. In The Visual System of Fish, ed. Douglas, R.H. & Djamgoz, M.B., pp. 443464. New York: Croon Helm Ltd.
Fernald, R.D. (1991). Principles of sensory regeneration. In Regeneration of Vertebrate Sensory Receptor Cells, Vol. 160, ed. Bock, G.R., Marsh, J. & Whelan, J., pp. 318329. New York: Wiley.
Fernald, R.D. & Hirata, N. (1977a). Field study of Haplochromis burtoni: Quantitative behavioral observations. Animal Behaviour 25, 964975.
Fernald, R.D. & Hirata, N. (1977b). Field study of Haplochromis burtoni: Habitats and co-habitants. Environmental Biology 2, 299308.
Fernald, R.D. & Liebman, P.A. (1980). Visual receptor pigments in the African cichlid fish Haplochromis burtoni. Vision Research 20, 857864.
Foster, R.G. & Bellingham, J. (2004). Inner retinal photoreceptors (IRPs) in mammals and teleost fish. Photochemistry and Photobiology Science 3, 617627.
Jacklet, J.W. (1989). Circadian neuronal oscillators. In Neuronal and Cellular Oscillators, ed. Jacklet, J., pp. 1218. New York: Marcel Dekker.
Korenbrot, J.I. & Fernald, R.D. (1989). Circadian rhythm and light regulate opsin mRNA in rod photoreceptors. Nature 337, 454457.
Kroger, R.H., Campbell, M.C., & Fernald, R.D. (2001). The development of the crystalline lens is sensitive to visual input in the African cichlid fish, Haplochromis burtoni. Vision Research 41, 549559.
Land, M.F. & Fernald, R.D. (1992). The evolution of eyes. Annual Review of Neuroscience 15, 129.
McFarland, W.N. & Munz, F.W. (1975). Part III: The evolution of photopic visual pigments in fishes. Vision Research 15, 10711080.
Pfaffl, M.W. (2001). A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Research 29, e45.
Pierce, M.E., Sheshberadaran, H., Zhang, Z., Fox, L.E., Applebury, M.L., & Takahashi, J.S. (1993). Circadian regulation of iodopsin gene expression in embryonic photoreceptors in retinal cell culture. Neuron 10, 579584.
Puzzolo, D. (1989). [Morphological adaptations of the eyes of vertebrates: Retinal trophism and the response to environmental stimuli]. Italian Journal of Anatomy and Embryology 94, 317378.
von Schantz, M., Lucas, R.J., & Foster, R.G. (1999). Circadian oscillation of photopigment transcript levels in the mouse retina. Brain Research Molecular Brain Research 72, 108114.
Wikler, K.C. & Rakic, P. (1990). Distribution of photoreceptor subtypes in the retina of diurnal and nocturnal primates. Journal of Neuroscience 10, 33903401.
Young, R.W. (1969). A difference between rods and cones in the renewal of outer segment protein. Investigative Ophthalmology 8, 222231.
Young, R.W. (1976). Visual cells and the concept of renewal. Investigative Ophthalmology and Visual Science 15, 700725.
Young, R.W. (1978). The daily rhythm of shedding and degradation of rod and cone outer segment membranes in the chick retina. Investigative Ophthalmology and Visual Science 17, 105116.
Young, R.W. & Bok, D. (1969). Participation of the retinal pigment epithelium in the rod outer segment renewal process. Journal of Cell Biology 42, 392403.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Visual Neuroscience
  • ISSN: 0952-5238
  • EISSN: 1469-8714
  • URL: /core/journals/visual-neuroscience
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed