Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-20T01:23:03.065Z Has data issue: false hasContentIssue false

Reciprocal inhibition of voltage-gated potassium currents (IK(V)) by activation of cannabinoid CB1 and dopamine D1 receptors in ON bipolar cells of goldfish retina

Published online by Cambridge University Press:  05 April 2005

SHIH-FANG FAN
Affiliation:
Department of Neurobiology and Behavior, Stony Brook University, Stony Brook
STEPHEN YAZULLA
Affiliation:
Department of Neurobiology and Behavior, Stony Brook University, Stony Brook

Abstract

Cannabinoid CB1 receptor (via Gs) and dopamine D2 receptor (via Gi/o) antagonistically modulate goldfish cone membrane currents. As ON bipolar cells have CB1 and D1 receptors, but not D2 receptors, we focused on whether CB1 receptor agonist and dopamine interact to modulate voltage-dependent outward membrane K+ currents IK(V) of the ON mixed rod/cone (Mb) bipolar cells. Whole-cell currents were recorded from Mb bipolar cells in goldfish retinal slices. Mb bipolar cells were identified by intracellular filling with Lucifer yellow. The bath solution was calcium-free and contained 1 mM cobalt to block indirect calcium-dependent effects. Dopamine (10 μM) consistently increased IK(V) by a factor of 1.57 ± 0.12 (S.E.M., n = 15). A CB receptor agonist, WIN 55212-2 (0.25–1 μM), had no effect, but 4 μM WIN 55212-2 suppressed IK(V) by 60%. If IK(V) was first increased by 10 μM dopamine, application of WIN 55212-2 (0.25–1 μM) reversibly blocked the effect of dopamine even though these concentrations of WIN 55212-2 had no effect of their own. If WIN 55212-2 was applied first and dopamine (10 μM) was added to the WIN-containing solution, 0.1 μM WIN 55212-2 blocked the effect of dopamine. All effects of WIN 55212-2 were blocked by coapplication of SR 141716A (CB1 antagonist) and pretreatment with pertussis toxin (blocker of Gi/o) indicating action via CB1 receptor activation of G protein Gi/o. Coactivation of CB1 and D1 receptors on Mb bipolar cells produces reciprocal effects on IK(V). The CB1-evoked suppression of IK(V) is mediated by G protein Gi/o, whereas the D1-evoked enhancement is mediated by G protein Gs. As dopamine is a retinal “light” signal, these data support our notion that endocannabinoids function as a “dark” signal, interacting with dopamine to set retinal sensitivity.

Type
Research Article
Copyright
© 2005 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ameri, A. (1999). The effects of cannabinoids on the brain. Progress in Neurobiology 58, 315348.CrossRefGoogle Scholar
Anderson, L.A., Anderson, J.J., Chase, T.N., & Walter, J.R. (1995). The cannabinoid agonists WIN55212-2 and CP-55940 attenuate rotational behavior induced by a dopamine D1 but not D2 agonist in rats with unilateral lesions of the nigrostriatal pathway. Brain Research 691, 106114.CrossRefGoogle Scholar
Anderson, J.J., Kask, A.M., & Chase, T.N. (1996). Effects of cannabinoid receptor stimulation and blockade on catalepsy produced by dopamine receptor antagonists. European Journal of Pharmacology 295, 163168.CrossRefGoogle Scholar
Ayoub, G.S. & Matthews, G. (1992). Substance P modulates calcium current in retinal bipolar neurons. Visual Neuroscience 8, 539544.CrossRefGoogle Scholar
Birch, J., Kolle, RU., Kunkel, M., Paulus, W., & Upadhyay, P. (1998). Acquired colour deficiency in patients with Parkinson's disease. Vision Research 38, 34213426.CrossRefGoogle Scholar
Bodis-Wollner, I. (1990). Visual deficits related to dopamine deficiency in experimental animals and Parkinson's disease patients. Trends in Neuroscience 13, 296302.CrossRefGoogle Scholar
Bodis-Wollner, I. (1997). Visual electrophysiology in Parkinson's disease: PERG, VEP and visual P300. Clinical Electroencephalography 28, 143147.CrossRefGoogle Scholar
Bodis-Wollner, I. & Antal, A. (1995). On the functional significance of primate retinal dopamine receptors. Journal of Neural Transmission Suppl. 45, 6774.Google Scholar
Bonhaus, D.W., Chang, L.K., Kwan, J., & Martin, G.R. (1998). Dual activation and inhibition of adenylyl cyclase by cannabinoid receptor agonist: Evidence for agonist-specific trafficking of intracellular responses. Journal of Pharmacology and Experimental Therapeutics 287, 884888.Google Scholar
Calandra, B., Porta, G., Kerim, S., Delpech, M., Carillon, C., Lazennec, C., Ferrara, P., & Shiono, H. (1999). Dual intracellular signaling pathways mediated by the human cannabinoid CB1 receptor. European Journal of Pharmacology 374, 445455.CrossRefGoogle Scholar
Cheer, J.F., Kendall, D.A., Mason, R., & Marsden, C.A. (2003). Differential cannabinoid-induced electrophysiological effects in rat ventral tegmentum. Neuropharmacology 44, 633641.CrossRefGoogle Scholar
Consroe, P., Musty, R., Rein, J., Tillery, W., & Pertwee, R.G. (1997). The perceived effects of smoked cannabis on patients with multiple sclerosis. European Neurology 38, 4448.Google Scholar
Dawson, W., Jimenez-Antillon, C.F., Perez, J.M., & Zeskind, J.A. (1977). Marijuana and vision—after ten years' use in Costa Rica. Investigative Ophthalmology and Visual Science 16, 689699.Google Scholar
De Petrocellis, L.D., Cascio, M.G., & di Marzo, V. (2004). The endocannabinoid system: A general view and latest additions. British Journal of Pharmacology 141, 765774.CrossRefGoogle Scholar
Djamgoz, M.B.A. & Wagner, H.-J. (1992). Invited review: Localization and function of dopamine in the adult vertebrate retina. Neurochemistry International 20, 139191.CrossRefGoogle Scholar
Dowling, J.E. & Ehinger, B. (1978). The interplexiform cell system-I. Synapses of the dopaminergic neurons of the goldfish retina. Proceedings of the Royal Society B (London) 201, 726.CrossRefGoogle Scholar
Fan, S.-F. & Yazulla, S. (1999a). Suppression of voltage-dependent K+ currents in retinal bipolar cells by ascorbate Visual Neuroscience 16, 138148.Google Scholar
Fan, S.-F. & Yazulla, S. (1999b). Modulation of voltage-dependent K+ currents (IK(V)) in retinal bipolar cells by ascorbate is mediated by dopamine D1 receptors. Visual Neuroscience 16, 923931.Google Scholar
Fan, S.-F. & Yazulla, S. (2003). Biphasic modulation of voltage-dependent currents of retinal cones by cannabinoid CB1 receptor agonist WIN 55212-2. Visual Neuroscience 20, 177188.CrossRefGoogle Scholar
Fan, S.-F. & Yazulla, S. (2004). Inhibitory interaction of cannabinoid CB1 receptor and dopamine D2 receptor agonists on voltage-gated currents of goldfish cones. Visual Neuroscience 21, 6979.CrossRefGoogle Scholar
Fenwick, W.M., Marty, A., & Neher, E. (1982). A patch-clamp study of bovine chromaffin cells and of their sensitivity to acetylcholine. Journal of Physiology 331, 577597.CrossRefGoogle Scholar
French, E.D. (1997). delta9-Tetrahydrocannabinoid excites rat VTA dopamine neurons through activation of cannabinoid CB1 but not opioid receptors. Neuroscience Letters 226, 159162.CrossRefGoogle Scholar
Fride, E. (2002). Endocannabinoids in the central nervous system—an overview. Prostaglandins Leukotrienes and Essential Fatty Acids 66, 221233.CrossRefGoogle Scholar
Gessa, G.L., Melis, M., Muntoni, A.L., & Diana, M. (1998). Cannabinoids activate mesolimbic dopamine neurons by an action on cannabinoid CB1 receptors. European Journal of Pharmacology 341, 3944.CrossRefGoogle Scholar
Glaser, S.T., Studholme, K.M., Fatade, R., Yazulla, S., Abumrad, N.A., & Deutsch, D.G. (2002). Is there an anandamide transporter. Burlington, VT, International Cannabinoid Research Society. 2002 Symposium on the Cannabinoids. Page 9. http://cannabinoidsociety.org/HTML/ICRS.2002.symposium.pdf.
Glass, M. & Felder, C.C. (1997). Concurrent stimulation of cannabinoid CB1 and dopamine D2 receptors augments cAMP accumulation in striatal neurons: Evidence for a Gs linkage to the CB1 receptor. Journal of Neuroscience 17, 53275333.Google Scholar
Gough, A.L. & Olley, J.E. (1978). Catalepsy induced by intrastriatal injections of Δ9-THC and 11-OH-Δ9-THC in the rat. Neuropharmacology 17, 137144.CrossRefGoogle Scholar
Greengard, P., Nairn, A.C., Girault, J.-A., Ouimet, C.C., Snyder, G.L., Fisone, G., Allen, P.B., Fienberg, A., & Nishi, A. (1998). The DARPP-32/protein phospatase-1 cascade: A model for signal integration. Brain Research Reviews 26, 274284.CrossRefGoogle Scholar
Hamill, O.P., Marty, A., Neher, E., Sakmann, B., & Sigworth, F.J. (1981). Improved patch-clamp techniques for high resolution current recording from cells and cell-free membrane patches. Pflugers Archives 391, 85100.CrossRefGoogle Scholar
Harnois, C. & Di Paolo, T. (1990). Decreased dopamine in the retinas of patients with Parkinson's disease. Investigative Ophthalmology and Visual Science 31, 24732475.Google Scholar
Heidelberger, R. & Matthews, G. (1992). Calcium influx and calcium current in single synaptic terminals of goldfish retinal bipolar neurons. Journal of Physiology (London) 447, 235256.CrossRefGoogle Scholar
Heidelberger, R. & Matthews, G. (1994). Dopamine enhances Ca2+ responses in synaptic terminals of retinal bipolar neurons. Neuroreport 5, 729732.CrossRefGoogle Scholar
Hermann, H., Marsicano, G., & Lutz, B. (2002). Coexpression of the cannabinoid receptor type 1 with dopamine and serotonin receptors in distinct neuronal subpopulations of the adult mouse forebrain. Neuroscience 109, 451460.CrossRefGoogle Scholar
Johnson, J., Caravelli, M.L., & Brecha, N.C. (2001). Somatostatin inhibits calcium influx into rat rod bipolar cell axonal terminals. Visual Neuroscience 18, 101108.CrossRefGoogle Scholar
Julian, M.D., Martin, A.B., Cuellar, B., Rodriguez, D.F., Navarro, M., Moratalla, R., & Garcia-Segura, L.M. (2003). Neuroanatomical relationship between type 1 cannabinoid receptors and dopaminergic systems in the rat basal ganglia. Neuroscience 119, 309318.CrossRefGoogle Scholar
Kiplinger, G.F., Manno, J.E., Rodda, B.E., & Forney, R.B. (1971). Dose–response analysis of the effects of tetrahydrocannabinol in man. Clinical Pharmacology and Therapeutics 12, 650657.CrossRefGoogle Scholar
Kirsch, M. & Wagner, H.-J. (1989). Release pattern of endogenous dopamine in teleost retinae during light adaptation and pharmacological stimulation. Vision Research 29, 147154.CrossRefGoogle Scholar
Kupersmith, M.J., Shakin, E., Siegel, I.M., & Lieberman, A.R. (1982). Visual system abnormalities in patients with Parkinson's disease. Archives Neurology 39, 284286.CrossRefGoogle Scholar
Langheinrich, T., Tebartz van Elst, L., Lagreze, W.A., Bach, M., Lucking, V.H., & Greenlee, M.W. (2000). Visual contrast response functions in Parkinson's disease: Evidence from electroretinograms, visually evoked potentials and psychophysics. Clinical Neurophysiology 111, 6674.CrossRefGoogle Scholar
Maneuf, Y.P. & Brotchie, J.M. (1997). Paradoxical action of the cannabinoid WIN 55,212-2 in stimulated and basal cyclic AMP accumulation in rat globus pallidus slices. British Journal of Pharmacology 120, 13971398.CrossRefGoogle Scholar
Matsuda, S., Kanemitsu, N., Nakamura, A., Mimura, Y., Ueda, N., Kurahashi, Y., & Yamamoto, S. (1997). Metabolism of anandamide, an endogenous cannabinoid receptor ligand, in porcine ocular tissues. Experimental Eye Research 64, 707711.CrossRefGoogle Scholar
Meschler, J.P. & Howlett, A.C. (2001). Signal transduction interactions between CB1 cannabinoid and dopamine receptors in the rat and monkey striatum. Neuropharmacology 40, 918926.CrossRefGoogle Scholar
Mora-Ferrer, C., Yazulla, S., Studholme, K.M., & Haak-Frendscho, M. (1999). Dopamine D1-receptor immunolocalization in goldfish retina. Journal of Comparative Neurology 411, 705741.3.0.CO;2-Y>CrossRefGoogle Scholar
Muller, T., Kuhn, W., Buttner, T., & Przuntek, H. (1999). Colour vision abnormalities and movement time in Parkinson's disease. European Journal of Neurology 6, 711715.CrossRefGoogle Scholar
Navarro, M., Fernandez-Ruiz, J.J., De Miguel, R., Hernandez, M.L., Ceberia, M., & Ramos, J.A. (1993). Motor disturbances induced by an acute dose of Δ9-tetrahydrocannabinol: Possible involvement of nigrostriatal dopaminergic alterations. Pharmacology, Biochemistry and Behavior 45, 291298.CrossRefGoogle Scholar
Nawy, S. & Jahr, C.E. (1990). Suppression by glutamate of cGMP-activated conductance in retinal bipolar cells. Nature 346, 269271.CrossRefGoogle Scholar
Nawy, S. & Jahr, C.E. (1991). cGMP-gated conductance in retinal bipolar cells is suppressed by the photoreceptor transmitter. Neuron 7, 677683.CrossRefGoogle Scholar
Nguyen-Legros, J., Harnois, C., Di Paolo, T., & Simon, A. (1993). The retinal dopamine system in Parkinson's disease. Clinical Visual Science 8, 112.Google Scholar
Patel, S. & Hillard, C.J. (2003). Cannabinoid-induced Fos expression within A10 dopaminergic neurons. Brain Research 963, 1525.CrossRefGoogle Scholar
Petrucci, C., Resta, V., Fieni, F., Bigiani, A., & Bagnoli, P. (2001). Modulation of potassium current and calcium influx by somatostatin in rod bipolar cells isolated from the rabbit retina via sst2 receptors. Naunyn-Schmiedebergs Archives of Pharmacology 363, 680694.CrossRefGoogle Scholar
Pieri, V., Diederich, N.J., Raman, R., & Goetz, C.G. (2000). Decreased color discrimination and contrast sensitivity in Parkinson's disease. Journal of the Neurological Sciences 172, 711.CrossRefGoogle Scholar
Rodnitzky, R.L. (1998). Visual dysfunction in Parkinson's disease. Clinical Neuroscience 5, 102106.Google Scholar
Rodriguez De Fonseca, F., Martin Calderon, J.L., Mechoulam, R., & Navarro, M. (1994). Repeated stimulation of D1 dopamine receptors enhances (-)-11-hydrocannabinol-dimethyl-heptyl-induced catalepsy in male rats. Neuroreport 5, 761765.CrossRefGoogle Scholar
Russo, E.B., Merzouki, A., Mesa, J.M., Frey, K.A., & Bach, P.J. (2004). Cannabis improves night vision: A case study of dark adaptometry and scotopic sensitivity in kif smokers of the Rif mountains of northern Morocco. Journal of Ethnopharmacology 93, 99104.CrossRefGoogle Scholar
Sanudo-Pena, M.C., Force, M., Tsou, K., Miller, A.S., & Walker, J.M. (1998). Effects of intrastriatal cannabinoids on rotational behavior in rats: Interactions with the dopaminergic system. Synapse 30, 221226.3.0.CO;2-4>CrossRefGoogle Scholar
Savinainen, J.R. & Laitinen, J.T. (2004). Detection of cannabinoid CB1, adenosine A1, muscarinic acetylcholine, and GABA(B) receptor-dependent G protein activity in transducin-deactivated membranes and autoradiography sections of rat retina. Cell Molecular Neurobiology 24, 243256.CrossRefGoogle Scholar
Schlicker, E., Timm, J., & Göthert, M. (1996). Cannabinoid receptor-mediated inhibition of dopamine release in the retina. Naunyn-Schmiedebergs Archives of Pharmacology 354, 791795.CrossRefGoogle Scholar
Shiells, R.A. & Falk, G. (1990). Glutamate receptors of rod bipolar cells are linked to a cyclic CMP cascade via a G-protein. Proceedings of the Royal Society B (London) 242, 9194.CrossRefGoogle Scholar
Shire, D., Calandra, B., Bouaboula, M., Barth, F., Rinalde-Carmona, M., Casellas, P., & Ferrara, P. (1999). Cannabinoid receptor interactions with the antagonists SR 141716A and SR 144528. Life Science 65, 627635.CrossRefGoogle Scholar
Snellman, J. & Nawy, S. (2004). cGMP-dependent kinase regulates response sensitivity of the mouse on bipolar cell. Journal of Neuroscience 24, 66216628.Google Scholar
Straiker, A., Stella, N., Piomelli, D., Mackie, K., Karten, H.J., & Maguire, G. (1999). Cannabinoid CB1 receptors and ligands in vertebrate retina: Localization and function of an endogenous signaling system. Proceedings of the National Academy of Sciences of the U.S.A. 96, 1456514570.CrossRefGoogle Scholar
Straiker, A. & Sullivan, J.M. (2003). Cannabinoid receptor activation differentially modulates ion channels in photoreceptors of the tiger salamander. Journal of Neurophysiology 89, 26472654.CrossRefGoogle Scholar
Tachibana, M., Okada, T., Arimura, T., Kobayashi, K., & Piccolino, M. (1993). Dihydropyridine-sensitive calcium current mediates neurotransmitter release from bipolar cells of the goldfish retina. Journal of Neuroscience 13, 28982909.Google Scholar
Thoreson, W.B. & Witkovsky, P. (1999). Glutamate receptors and circuits in the vertebrate retina. Progress in Retinal and Eye Research 18, 765810.CrossRefGoogle Scholar
Witkovsky, P., Nicholson, C., Rice, M.E., Bohmaker, K., & Meller, E. (1993). Extracellular dopamine concentration in the retina of the clawed frog, Xenopus laevis. Proceedings of the National Academy of Science of the U.S.A. 90, 56675671.CrossRefGoogle Scholar
Woolverton, W.L. & Kleven, M.S. (1988). Multiple dopamine receptors and the behavioral effects of cocaine. National Institute on Drug Abuse Research Monograph 88, 160184.Google Scholar
Yazulla, S. (1985). Evoked efflux of 3H-GABA from goldfish retina in the dark. Brain Research 325, 171180.CrossRefGoogle Scholar
Yazulla, S. & Lin, Z.-S. (1995). Differential effects of dopamine depletion on the distribution of 3H-SCH23390 and 3H-spiperone binding sites in the goldfish retina. Vision Research 35, 25092514.Google Scholar
Yazulla, S., Studholme, K.M., McIntosh, H.H., & Deutsch, D.G. (1999). Immunocytochemical localization of cannabinoid CB1 receptor and fatty acid amide hydrolase in rat retina. Journal of Comparative Neurology 415, 8090.3.0.CO;2-H>CrossRefGoogle Scholar
Yazulla, S., Studholme, K.M., McIntosh, H.H., & Fan, S.F. (2000). Cannabinoid receptors on goldfish retinal bipolar cells: Electron-microscope immunocytochemistry and whole-cell recordings. Visual Neuroscience 17, 391401.CrossRefGoogle Scholar