Skip to main content
×
×
Home

Spectral-tuning mechanisms of marine mammal rhodopsins and correlations with foraging depth

  • JEFFRY I. FASICK (a1) and PHYLLIS R. ROBINSON (a2)
    • Published online: 15 December 2000
Abstract

It has been observed that deep-foraging marine mammals have visual pigments that are blue shifted in terms of their wavelength of maximal absorbance (λmax) when compared to analogous pigments from terrestrial mammals. The mechanisms underlying the spectral tuning of two of these blue-shifted pigments have recently been elucidated and depend on three amino acid substitutions (83Asn, 292Ser, and 299Ser) in dolphin rhodopsin, but only one amino acid substitution (308Ser) in the dolphin long-wavelength-sensitive pigment. The objective of this study was to investigate the molecular basis for changes in the spectral sensitivity of rod visual pigments from seven distantly related marine mammals. The results show a relationship between blue-shifted rhodopsins (λmax ≤ 490 nm), deep-diving foraging behavior, and the substitutions 83Asn and 292Ser. Species that forage primarily near the surface in coastal habitats have a rhodopsin with a λmax similar to that of terrestrial mammals (500 nm) and possess the substitutions 83Asp and 292Ala, identical to rhodopsins from terrestrial mammals.

Copyright
Corresponding author
Address correspondence and reprint requests to: Phyllis R. Robinson, Biological Sciences, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA. E-mail: probinso@umbc.edu
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Visual Neuroscience
  • ISSN: 0952-5238
  • EISSN: 1469-8714
  • URL: /core/journals/visual-neuroscience
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords