Skip to main content Accessibility help

Carolina redroot (Lachnanthes caroliniana) vegetative growth and rhizome production as affected by environmental factors and planting depth

  • Thierry. E. Besançon (a1)


Carolina redroot [Lachnanthes caroliniana (Lam.) Dandy] is a frequent weed of New Jersey cranberry (Vaccinium macrocarpon Aiton) bogs that competes with the crop for nutritional resources. Studies were conducted in 2018 to determine the effects of planting depth, soil moisture, lighting conditions, rhizome water content, and duration of rhizome submersion under water on L. caroliniana shoot emergence, vegetative growth, and rhizome development. Only planting depth greater than 12 cm significantly reduced shoot emergence (54%), biomass shoot and root production (27% and 65%, respectively), and rhizome formation (65%) compared with a 2-cm depth. Complete inhibition of new rhizome production was observed when the rhizome water content dropped to 30%. Soil moisture ≤30% decreased shoot biomass by ≥53% compared to 60% soil moisture, but marginally affected root biomass and had no impact on rhizome formation. Rhizome submersion for at least 120 d had minor effect on shoot emergence but reduced plant biomass by ≥28% and completely inhibited the formation of rhizomes. Finally, shading did not influence emergence but had a more dramatic effect on root and shoot biomass, which were reduced by 53% and 75%, respectively, and prevented the development of new rhizomes. This study demonstrates the plasticity of L. caroliniana to drought stress or long-lasting flooding conditions, therefore preventing consideration of cranberry bed temporary flooding or limitation of irrigation volume and frequency as viable management options. Sanding would not provide a layer of material sufficiently thick for reducing L. caroliniana shoot emergence. Reducing the quantity of light reaching the soil with black tarps or promoting rapid crop canopy closure are options that can complement the use of mesotrione for controlling L. caroliniana. Future research should address the practicality of these options, especially in bogs with low L. caroliniana pressure when early-summer weed regrowth occurs following dissipation of PRE herbicide activity.


Corresponding author

Author for correspondence: Thierry E. Besançon, Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901. Email:


Hide All
Applegate, JE, Little, S, Marucci, PE (2012) Plants and animal products of the Pine Barrens. Pages 2538 in Forman, R, ed. Pine Barrens: Ecosystem and Landscape. New York: Academic
Bankovich, B, Boughton, EH, Boughton, RK, Avery, ML, Wisely, SM (2016) Plant community shifts caused by feral swine rooting devalue Florida rangeland. Agric Ecosyst Environ 220:4554
Besançon, TE (2019a) Carolina redroot (Lachnanthes caroliniana) in cranberry: assessment of shoot and rhizome control with POST herbicides. Weed Technol 33:210216
Besançon, TE (2019b) What Did We Learn from Two Years of Research on Controlling Carolina Redroot? Accessed: May 13, 2019
Bhowmik, PC (1997) Weed biology: importance to weed management. Weed Sci 349–356
Boughton, EH, Boughton, RK (2014) Modification by an invasive ecosystem engineer shifts a wet prairie to a monotypic stand. Biol Invasions 16:21052114
Boughton, EH, Boughton, RK, Griffith, C, Bernath-Plaisted, J (2016) Reproductive traits of Lachnanthes caroliniana (Lam.) Dandy related to patch formation following feral swine rooting disturbance. J Torrey Bot Soc 143:265273
Boyd, NS, Van Acker, RC (2003) The effects of depth and fluctuating soil moisture on the emergence of eight annual and six perennial plant species. Weed Sci 51:725730
Carmer, SG, Nyquist, WE, Walker, WM (1989) Least significant differences for combined analyses of experiments with two- or three-factor treatment designs. Agron J 81:665672
Carr, BL, Besançon, TE, Schiffhauer, D (2017) Control of Carolina redroot (Lachnanthes caroliana) in cranberry with preemergence herbicides. In North American Cranberry Researcher and Extension Workers Conference. Accessed: May 13, 2019
Chauhan, BS (2013) Growth response of itchgrass (Rottboellia cochinchinensis) to water stress. Weed Sci 61:98103
Chauhan, BS, Abugho, SB (2013) Effect of water stress on the growth and development of Amaranthus spinosus, Leptochloa chinensis, and rice. Am J Plant Sci 4:989998
Dall’Armellina, AA, Zimdahl, RL (1988) Effect of light on growth and development of field bindweed (Convolvulus arvensis) and Russian knapweed (Centaurea repens). Weed Sci 36:779783
DeMoranville, CJ, Sandler, HA (2000) Sanding. UMass Cranberry Station. Accessed: December 7, 2018
DeMoranville, CJ, Sandler, HA, Shumaker, DE, Averill, AL, Caruso, F, Sylvia, MM, Pober, DM (2005) Fall flooding for management of cranberry fruitworm (Acrobasis vaccinii) and dewberry (Rubus hispidus) in Massachusetts cranberry production. Crop Prot 24:9991006
Gealy, D (1998) Differential response of palmleaf morningglory (Ipomoea wrightii) and pitted morningglory (Ipomoea lacunosa) to flooding. Weed Sci 46:217224
Godara, RK, Williams, BJ, Webster, EP (2011) Texasweed (Caperonia palustris) can survive and reproduce in 30-cm flood. Weed Technol 25:667673
Heckman, NL, Horst, GL, Gaussoin, RE (2002) Planting depth effect on emergence and morphology of buffalograss seedlings. HortScience 37:506507
Heneghan, JM, Johnson, WG (2017) The growth and development of five waterhemp (Amaranthus tuberculatus) populations in a common garden. Weed Sci 65:247255
Holt, JS (1995) Plant responses to light: a potential tool for weed management. Weed Sci 43:474482
Hutchinson, RA, Viers, JH (2011) Tarping as an alternative for perennial pepperweed (Lepidium latifolium) control. Invasive Plant Sci Manag 4:6672
Kaur, S, Aulakh, J, Jhala, AJ (2016) Growth and seed production of glyphosate-resistant giant ragweed (Ambrosia trifida L.) in response to water stress. Can J Plant Sci 96:828836
Knezevic, SZ, Evans, SP, Blankenship, EE, Van Acker, RC, Lindquist, JL (2002) Critical period for weed control: the concept and data analysis. Weed Sci 50:773786
Li, B, Shibuya, T, Yogo, Y, Hara, T, Matsuo, K (2001) Effects of light quantity and quality on growth and reproduction of a clonal sedge, Cyperus esculentus. Plant Species Biol 16:6981
Majek, BA, Ayeni, AO (2004) Utilization of mesotrione for weed control in cranberries [abstract]. Pages 145145 in Proceedings of the 58th Annual Meeting of the Northeastern Weed Science Society. Cambridge, MA: Northeastern Weed Science Society
McMaster, GS, Wilhelm, WW, Morgan, JA (1992) Simulating winter wheat shoot apex phenology. J Agric Sci 119:112
Norsworthy, JK, Ward, SM, Shaw, DR, Llewellyn, RS, Nichols, RL, Webster, TM, Bradley, KW, Frisvold, G, Powles, SB, Burgos, NR, Witt, WW, Barrett, M (2012) Reducing the risks of herbicide resistance: best management practices and recommendations. Weed Sci 60:3162
Oudemans, PV, Caruso, FL, Stretch, AW (1998) Cranberry fruit rot in the Northeast: a complex disease. Plant Dis 82:11761184
Oudemans, PV, Polashock, JJ, Vinyard, BT (2008) Fairy ring disease of cranberry: assessment of crop losses and impact on cultivar genotype. Plant Dis 92:616622
Roman, ES, Murphy, SD, Swanton, CJ (2000) Simulation of Chenopodium album seedling emergence. Weed Sci 48:217224
Sandler, HA (2010) Managing Cuscuta gronovii (Swamp dodder) in cranberry requires an integrated approach. Sustainability 2:660683
Sandler, HA, Dalbec, L, Ghantous, K, eds (2015) Identification Guide for Weeds in Cranberries. Québec: Centre de Référence en Agriculture et Agroalimentaire du Québec. 239 p
Sandler, HA, Else, MJ, Sutherland, M (1997) Application of sand for inhibition of swamp dodder (Cuscuta gronovii) seedling emergence and survival on cranberry (Vaccininium macrocarpon) bogs. Weed Technol 11:318323
Sandler, HA, Mason, J (2010) Flooding to manage dodder (Cuscuta gronovii) and broad-leaved weed species in cranberry: An innovative use of a traditional strategy. Renew Agric Food Syst 25:257262
Sarangi, D, Irmak, S, Lindquist, JL, Knezevic, SZ, Jhala, AJ (2016) Effect of water stress on the growth and fecundity of common waterhemp (Amaranthus rudis). Weed Sci 64:4252
Shen, J, Shen, M, Wang, X, Lu, Y (2005) Effect of environmental factors on shoot emergence and vegetative growth of alligatorweed (Alternanthera philoxcroides). Weed Sci 53:471478
Spiess, AN, Neumeyer, N (2010) An evaluation of R2 as an inadequate measure for nonlinear models in pharmacological and biochemical research: a Monte Carlo approach. BMC Pharmacol 10:6
Tomlinson, B (1937) Proper sanding of great importance in good bog management. Cranberries 1: 4, 811
[USDA-NRCS] U.S. Department of Agriculture–Natural Resources Conservation Service (2018) Lachnanthes caroliana (Lam) Dandy. PLANTS Database. Accessed: September 7, 2018
Webster, TM, Grey, TL (2008) Growth and reproduction of benghal dayflower (Commelina benghalensis) in response to drought stress. Weed Sci 56:561566
Welker, WV (1979) Control of Carolina redroot (Lachnanthes tinctoria) [abstract]. Page 142 in Proceedings of the 33rd Annual Meeting of the Northeastern Weed Science Society. Philadelphia: Northeastern Weed Science Society
Zimdahl, RL, Lin, J, Dall’Armellina, AA (1991) Effect of light, watering frequency, and chlorsulfuron on Canada thistle (Cirsium arvense). Weed Sci 39:590594


Carolina redroot (Lachnanthes caroliniana) vegetative growth and rhizome production as affected by environmental factors and planting depth

  • Thierry. E. Besançon (a1)


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed