Skip to main content
×
×
Home

Distribution of Glyphosate-Resistant Horseweed (Conyza canadensis) and Relationship to Cropping Systems in The Central Valley of California

  • Bradley D. Hanson (a1), Anil Shrestha (a2) and Dale L. Shaner (a3)
Abstract

Horseweed is an increasing problem in perennial crops and noncrop areas of the Central Valley of California. Similar to the situation in glyphosate-tolerant crops in other regions, glyphosate-based weed-management strategies in perennial crops and noncrop areas have resulted in selection of a glyphosate-resistant horseweed biotype in California. Research was conducted to determine the level of resistance to glyphosate in horseweed using an in vivo enzyme assay and to determine the distribution of the resistant horseweed biotype in central California. The resistant biotype was 4.8-fold more resistant to in vivo glyphosate exposure compared with the susceptible biotype, although enzyme function was inhibited in both biotypes at high glyphosate concentrations. An intermediate in vivo glyphosate dose was used to discriminate between glyphosate-resistant and glyphosate-susceptible individuals in a roadside survey conducted in 2006 to 2007. Overall, 62% of the individuals tested from the Central Valley were classified as resistant to glyphosate. Resistant individuals were found at most locations throughout the Central Valley, although the proportion of resistant individuals was slightly lower in the northern-most area. No correlation could be made between proportion of resistant or susceptible individuals and land use patterns likely because of long-distance seed dispersal or different selection pressure for resistant biotypes on field margins compared with that within fields. Horseweed with an economically significant level of resistance to glyphosate is already widely distributed in the Central Valley of California. Grower awareness of the problem and adoption of best management practices are needed to minimize the effects of horseweed in this highly productive and diverse agricultural region.

Copyright
Corresponding author
Corresponding author's E-mail: brad.hanson@ars.usda.gov
References
Hide All
Beckie, H. J., Heap, I. M., Smeda, R. J., and Hall, L. M. 2000. Screening for herbicide resistance in weeds. Weed Technol. 14:428445.
[CADPR] California Department of Pesticide Regulation 2008. Pesticide Use Reporting Database. http://www.cdpr.ca.gov/docs/pur/purmain.htm. Accessed: June 1, 2008.
[CADWR] California Department of Water Resources 2008. California Land and Water Use Survey Database. http://www.landwateruse.water.ca.gov/basicdata/landuse/landusesurvey.cfm. Accessed: June 1, 2008.
Dauer, J. T., Mortensen, D. A., and VanGessel, M. J. 2007. Temporal and spatial dynamics of long-distance Conyza canadensis seed dispersal. J. Appl. Ecol. 44:105114.
Davis, V. M., Gibson, K. D., and Johnson, W. G. 2008. A field survey to determine distribution and frequency of glyphosate-resistant horseweed (Conyza canadensis) in Indiana. Weed Technol. 22:331338.
Dinelli, G., Marotti, I., Catizone, P., Bonetti, A., Urbano, J. M., and Barnes, J. 2008. Physiological and molecular basis of glyphosate resistance in C. bonariensis (L.) Cronq. biotypes from Spain. Weed Res. 48:257265.
Feng, P. C., Tran, M., Chiu, T., Sammons, R. D., Heck, G. R., and CaJacob, C. A. 2004. Investigation into GR horseweed (Conyza canadensis): retention, uptake, translocation and metabolism. Weed Sci. 52:498505.
Gianessi, L. P. 2004. Economic and herbicide use impacts of GM crops. Pest Manag. Sci. 61:241245.
Grantz, D. A., Shrestha, A., and Vu, H. 2008. Early vigor and ozone response in horseweed (Conyza canadensis) biotypes differing in glyphosate response. Weed Sci. 56:224230.
Heap, I. 2008. The International Survey of Herbicide Resistant Weeds. http://www.weedscience.com. Accessed: September 15, 2008.
Heap, I. and LeBaron, H. 2001. Introduction and overview of resistance. Pages 122. in Powles, S. B. and Shaner, D. L. Herbicide Resistance and World Grains. Boca Raton, FL CRC.
Jasieniuek, M., Ahmad, R., Sherwood, A. M., Firestone, J. L., Perez-Jones, A., Lanini, W. T., Mallory-Smith, C., and Stednick, Z. 2008. Glyphosate-resistant Italian ryegrass (Lolium multiflorum) in California: distribution, response to glyphosate, and molecular evidence for an altered target enzyme. Weed Sci. 56:496502.
Koger, C. H. and Reddy, K. N. 2005. Role of absorption and translocation in the mechanism of glyphosate resistance in horseweed (Conyza canadensis). Weed Sci. 53:8489.
Koger, C. H., Shaner, D. L., Henry, W. B., Nadler-Hassar, T., Thomas, W. E., and Wilcut, J. W. 2005. Assessment of two nondestructive assays for detecting glyphosate resistance in horseweed (Conyza canadensis). Weed Sci. 53:559566.
Main, C. L., Muieller, T. C., Hayes, R. M., and Wilkerson, J. B. 2004. Response of selected horseweed (Conyza canadensis (L.) Cronq.) populations to glyphosate. J. Agric. Food Chem. 52:879883.
Mueller, T. C., Massey, J. H., Hayes, R. M., Main, C. L., and Stewart, C. N. Jr. 2003. Shikimate accumulates in both glyphosate-sensitive and glyphosate-resistant horseweed (Conyza canadensis L. Cronq.). J. Agric. Food Chem. 51:680684.
Nandula, V. K., Reddy, K. N., Duke, S. O., and Poston, D. H. 2005. Glyphosate-resistant weeds: current status and future outlook. Outlooks Pest Manag. 16:183187.
Perez-Jones, A., Park, K-W., Polge, N., Colquhoun, J., and Mallory-Smith, C. A. 2007. Investigating the mechanisms of glyphosate resistance in Lolium multiflorum . Planta. 226:395404.
Shaner, D. L. 2000. The impact of glyphosate-tolerant crops on the use of other herbicides and on resistance management. Pest Manag. Sci. 56:320326.
Shaner, D. L. 2009. The role of translocation as a mechanism of resistance to glyphosate. Weed Sci. In Press.
Shaner, D. L., Nadler-Hassar, T., Henry, W. B., and Koger, C. H. 2005. A rapid in vivo shikimate accumulation assay with excised leaf discs. Weed Sci. 53:769774.
Shrestha, A., Hanson, B. D., and Hembree, K. J. 2008. Glyphosate-resistant hairy fleabane (Conyza bonariensis) documented in the Central Valley. Calif. Agric. 62 (3):116119.
Shrestha, A., Hembree, K. J., and Va, N. 2007. Growth stage influences level of resistance in glyphosate-resistant horseweed. Calif. Agric. 61 (2):6770.
Simarmata, M., Kaufmann, J. E., and Penner, D. 2003. Potential basis of glyphosate resistance in California rigid ryegrass (Lolium rigidum). Weed Sci. 51:678–382.
[USDA-NASS] U.S. Department of Agriculture–National Agricultural Statistics Service 2006. Agricultural Chemical Usage—2005 Fruit Summary. http://usda.mannlib.cornell.edu/MannUsda/viewDocumentInfo.dodocumentID1567. Accessed June 2008.
Van Gessel, M. J. 2001. Glyphosate-resistant horseweed from Delaware. Weed Sci. 49:703705.
Wakelin, A. M., Lorraine-Colwill, D. F., and Preston, C. 2004. Glyphosate resistance in four different populations of Lolium rigidum as associated with reduced translocation of glyphosate to meristematic zones. Weed Res. 44:453459.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Weed Science
  • ISSN: 0043-1745
  • EISSN: 1550-2759
  • URL: /core/journals/weed-science
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed