Skip to main content
×
Home
    • Aa
    • Aa

Glyphosate Tolerance Mechanism in Italian Ryegrass (Lolium multiflorum) from Mississippi

  • Vijay K. Nandula (a1), Krishna N. Reddy (a2), Daniel H. Poston (a1), Agnes M. Rimando (a3) and Stephen O. Duke (a3)...
Abstract

A threefold glyphosate tolerance was identified in two Italian ryegrass populations, T1 and T2, from Mississippi. Laboratory experiments were conducted to characterize the mechanism of glyphosate tolerance in these populations. The T1 population absorbed less 14C-glyphosate (43% of applied) compared to the susceptible (S) population (59% of applied) at 48 h after treatment (HAT). The T2 population absorbed 14C-glyphosate at levels (56% of applied at 48 HAT) that were similar to both T1 and S populations, but tended to be more comparable to the S population. The amount of 14C-glyphosate that remained in the treated leaf was significantly higher in both T1 (67% of absorbed) and T2 (65% of absorbed) populations compared to the S population (45% of absorbed) at 48 HAT. The amount of 14C-glyphosate that moved out of treated leaf to shoot and root was lower in both T1 (25% of absorbed in shoot and 9% of absorbed in root) and T2 (25% of absorbed in shoot and 11% of absorbed in root) populations compared to the S population (40% of absorbed in shoot and 16% of absorbed in root) at 48 HAT. There were no differences in epicuticular wax mass among the three populations. Treating a single leaf with glyphosate solution at the field use rate (0.84 kg ae ha−1) as 10 1-µl droplets killed the S plant but not the T1 and T2 plants (33 and 55% shoot fresh-weight reduction, respectively). Shikimic acid accumulated rapidly at higher levels in glyphosate-treated leaf segments of the S population compared to the T1 population up to 100 µM glyphosate. However, above 500 µM glyphosate, the levels of shikimate were similar in both the S and T1 populations. Furthermore, shikimic acid content was three- to sixfold more in whole plants of the S population treated with 0.22 kg ae ha−1 glyphosate compared to the T1 and T2 populations. No degradation of glyphosate to aminomethylphosphonic acid was detected among the tolerant and susceptible populations. These results indicate that tolerance to glyphosate in the T1 population is partly due to reduced absorption and translocation of glyphosate and in the T2 population it is partly due to reduced translocation of glyphosate.

Copyright
Corresponding author
Corresponding author's E-mail: vknandula@yahoo.com
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

S. O.Duke , S. R.Baerson , and A. M.Rimando 2003. Herbicides: glyphosate. in J. R.Plimmer , D. W.Gammon , and N. N.Ragsdale Encyclopedia of Agrochemicals. New York Wiley. http://www.mrw.interscience.wiley.com/eoa/articles/agr119/frame.html. Accessed: July 2, 2007.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Weed Science
  • ISSN: 0043-1745
  • EISSN: 1550-2759
  • URL: /core/journals/weed-science
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords: