Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-24T14:22:28.424Z Has data issue: false hasContentIssue false

Imidazolinone and Sulfonylurea Resistance in a Biotype of Common Waterhemp (Amaranthus rudis)

Published online by Cambridge University Press:  12 June 2017

Sarah Taylor Lovell
Affiliation:
Dep. of Agron., Univ. Illinois
Loyd M. Wax
Affiliation:
USDA/ARS, Crop Protection Res., Dep. of Agron., Univ Illinois, Urbana, IL 61801
Michael J. Horak
Affiliation:
Dep. of Agron., Kansas State Univ.
Dallas E. Peterson
Affiliation:
Dep. of Agron., Kansas State Univ., Manhattan KS 66506

Abstract

The incidence of weed resistance to acetolactate synthase (ALS) inhibiting herbicides has increased in the United States. In 1993, a population of ALS-resistant common waterhemp was discovered after two confirmed applications of an imidazolinone herbicide. Following another imazethapyr application in the glasshouse, the resistant biotype demonstrated 130-fold resistance to imazethapyr at the whole plant level. The concentration of imazethapyr required to inhibit the ALS activity by 50% was 520 times greater for the resistant biotype than the susceptible. Plants also demonstrated cross-resistance to the sulfonylureas, chlorimuron and thifensulfuron, at the whole plant and enzyme levels. This particular discovery is of concern due to the low number of applications of the selection agent (imazaquin 1989, imazethapyr 1992, and imazethapyr in the greenhouse) and the high degree of cross-resistance eliminating several options for weed control.

Type
Physiology, Chemistry, and Biochemistry
Copyright
Copyright © 1996 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Abernathy, J. R. 1992. Imidazolinones. Pages 273281 in Herbicide Action: An Intensive Course on the Activity, Selectivity, Behavior, and Fate of Herbicides in Plants and Soils. Purdue University. West Lafayette, IN.Google Scholar
2. Brown, H. M. 1990. Mode of action, crop selectivity, and soil relations of the sulfonylurea herbicides. Pestic. Sci. 29: 263281.CrossRefGoogle Scholar
3. Christopher, J. T., Powles, S. B., and Holtum, J.A.M. 1992. Resistance to acetolactate synthase-inhibiting herbicides in annual ryegrass (Lolium rigidum) involves at least two mechanisms. Plant Physiol. 100: 19091913.CrossRefGoogle ScholarPubMed
4. Cotterman, J. C. and Saari, L. L. 1992. Rapid metabolic inactivation is the basis for cross-resistance to chlorsulfuron in diclofop-methyl-resistant rigid ryegrass (Lolium rigidum) biotype SR4/84. Pestic. Biochem. Physiol. 43: 182192.CrossRefGoogle Scholar
5. Gerwick, B. C., Mireles, L. C., and Eilers, R. J. 1993. Rapid diagnosis of ALS/AHAS-resistant weeds. Weed Technol. 7: 519524.CrossRefGoogle Scholar
6. Horak, M. and Peterson, D. E. 1995. Biotypes of Palmer amaranth (Amaranthus palmeri) and common waterhemp (Amaranthus rudis) are resistant to imazethapyr and thifensulfuron. Weed Technol. 9: 192195.CrossRefGoogle Scholar
7. Kendig, J. A. and DeFelice, M. S. 1994. ALS resistant cocklebur(Xanthium strumarium L.) in Missouri. Abstr. Weed Sci. Soc. Am., p. 12.Google Scholar
8. Saari, L. L., Cotterman, J. C., and Primiani, M. M. 1990. Mechanism of sulfonylurea herbicide resistance in the broadleaf weed, Kochia scoparia . Plant Physiol. 93: 5561.CrossRefGoogle ScholarPubMed
9. Saari, L. L., Cotterman, J. C., Smith, W. S., and Primiani, M. M. 1992. Sulfonylurea herbicide resistance in common chickweed, perennial ryegrass, and Russian thistle. Pestic. Biochem. Physiol. 42: 110118.CrossRefGoogle Scholar
10. Saari, L. L., Cotterman, J. C., and Thill, D. C. 1994. Resistance to acetolactate synthase inhibiting herbicides. Pages 83140 in Powles, S. and Holtum, J., eds. Herbicide Resistance in Plants: Biology and Biochemistry. Boca Raton. Lewis Publishers.Google Scholar
11. Saxena, P. K. and King, J. 1988. Herbicide resistance in Datura innoxia: cross-resistance of sulfonylurea-resistant cell lines to imidazolinones. Plant Physiol. 86: 863867.CrossRefGoogle ScholarPubMed
12. Schmitzer, P. R., Eilers, R. J., and Cseke, C. 1993. Lack of cross-resistance of imazaquin-resistant Xanthium strumarium acetolactate synthase to flumetsulam and chlorimuron. Plant Physiol. 103: 281283.CrossRefGoogle ScholarPubMed
13. Shaner, D. L. 1991. Mechanisms of resistance to acetolactate synthase/acetohydroxyacid synthase inhibitors. Pages 187198 in Caseley, J. C., Cussans, G. W., and Atkin, R. K., eds. Herbicide Resistance in Weeds and Crops. Oxford, England: Butterworth-Heinemann Ltd.CrossRefGoogle Scholar
14. Simpson, D. M., Stoller, E. W., and Wax, L. M. 1995. An in vivo acetolactate synthase assay Weed Technol. 9: 1722.Google Scholar
15. Westerfeld, W. W. 1945. A colorimetric determination of blood acetoin. J. Biol. Chem. 161: 495502.CrossRefGoogle Scholar