Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-25T12:05:18.474Z Has data issue: false hasContentIssue false

Integrated Control of Waterhyacinth (Eichhornia crassipes) with a Pathogen, Insects, and Herbicides

Published online by Cambridge University Press:  12 June 2017

R. Charudattan*
Affiliation:
Plant Pathol. Dep., Ctr. for Aquatic Weeds, Univ. Florida, Gainesville, FL 32611

Extract

Although the problems with waterhyacinth (Eichhornia crassipes [Mart.] Solms; # EICCR) have diminished in the United States over the last decade, the weed continues to be troublesome and requires constant management on a maintenance basis (29, 30). Chemical herbicides are currently the principal means of control when an immediate solution to a waterhyacinth problem is needed. Preventive maintenance programs also rely on chemicals to keep the weed populations at acceptable levels and to prevent weed migration into unwanted areas. However, when control is not urgently required or is economically unfeasible due to the location of the weed, a combination of biological control agents is used. The latter may have been the important factor that contributed to the lessening of the weed problem in this country over the past decade (43).

Type
Research Article
Copyright
Copyright © 1986 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Addor, E. E. 1977. A field test of selected insects and pathogens for control of waterhyacinths. Report 1. Preliminary results for the 1975–76 season. Misc. Pap. A–77–2. U.S. Army Eng. Waterways Exp. Stn., Vicksburg, MS, 44 pp.Google Scholar
2. Andres, L. A. 1982. Integrating weed biological control agents into a pest-management program. Weed Sci. 30 (Suppl. 1):2530.Google Scholar
3. Andres, L. A. and Bennett, F. D. 1975. Biological control of aquatic weeds. Annu. Rev. Entomol. 20:3145.CrossRefGoogle Scholar
4. Baer, R. G. and Quimby, P. C. Jr. 1981. Laboratory rearing and life history of Arzama densa, a potential native biological control agent against waterhyacinth. J. Aquat. Plant Manage. 19:2226.Google Scholar
5. Bennett, F. D. 1984. Biological control of aquatic weeds. Pages 1440 in Thyagarajan, G., ed. Proc. Int. Conf. on Water Hyacinth. United Nations Env. Prog., Box 30552, Nairobi, Kenya.Google Scholar
6. Burkhalter, A. P. 1972. Florida's department of natural resources policies and plans as related to aquatic weed control and research. Hyacinth Control J. 10:24.Google Scholar
7. Cassani, J. R., Miller, T. W. Jr., and Beach, M. L. 1981. Biological control of aquatic weeds in Southwest Florida. J. Aquat. Plant Manage. 19:4950.Google Scholar
8. Center, T. D. 1975. The use of insects for the biological control of waterhyacinth in the United States. Pages 5159 in Brezonik, P. L. and Fox, J. L., eds. Proc. Symp. on Water Qual. Manage. through Biol. Control. Dep. Env. Eng. Sci., Univ. Fla., Gainesville, FL.Google Scholar
9. Center, T. D. 1981. Sameodes albiguttalis, a new biocontrol agent for waterhyacinth. Aquatics 3(4):8, 10–12.Google Scholar
10. Center, T. D. 1982. The waterhyacinth weevils, Neochetina eichhorniae and N. bruchi . Aquatics 4(2):8, 16–19.Google Scholar
11. Center, T. D., Steward, K. K., and Bruner, M. C. 1982. Control of waterhyacinth (Eichhornia crassipes) with Neochetina eichhorniae (Coleoptera: Curculionidae) and a growth retardant. Weed Sci. 30:453457.CrossRefGoogle Scholar
12. Charudattan, R. 1984. Role of Cercospora rodmanii and other pathogens in the biological and integrated controls of waterhyacinth. Pages 834859 in Thyagarajan, G., ed. Proc. Int. Conf. on Water Hyacinth, United Nations Env. Prog., Box 30552, Nairobi, Kenya.Google Scholar
13. Charudattan, R., Perkins, B. D., and Littell, R. C. 1978. Effects of fungi and bacteria on the decline of arthropod-damaged waterhyacinth (Eichhornia crassipes) in Florida. Weed Sci. 26:101107.CrossRefGoogle Scholar
14. Cofrancesco, A. F. Jr. 1982. The impact of augmented field populations of Arzama densa larvae on waterhyacinth. Misc. Pap. A–82–8. U.S. Army Eng. Waterways Exp. Stn., Vicksburg, MS. 22 pp.Google Scholar
15. Conway, K. E. 1976. Cercospora rodmanii, a new pathogen of waterhyacinth with biological control potential. Can. J. Bot. 54: 10791083.CrossRefGoogle Scholar
16. Conway, K. E. 1976. Evaluation of Cercospora rodmanii as a biological control of waterhyacinths. Phytopathology 66:914917.Google Scholar
17. Conway, K. E. and Freeman, T. E. 1977. Host specificity of Cercospora rodmanii, a potential biological control of waterhyacinth. Plant Dis. Rep. 61:262266.Google Scholar
18. Conway, K. E., Freeman, T. E., and Charudattan, R. 1978. Development of Cercospora rodmanii as a biological control for Eichhornia crassipes . Pages 225230 in Proc. EWRS 5th Symp. on Aquat. Weeds. P.O. Box 14, Wageningen, The Netherlands.Google Scholar
19. Cordo, H. A. and DeLoach, C. J. 1976. Biology of the waterhyacinth mite in Argentina. Weed Sci. 24:245249.Google Scholar
20. Del Fosse, E. S. 1976. Interaction between the mottled waterhyacinth weevil, Neochetina eichhorniae Warner, and the waterhyacinth mite, Orthogalumna terebrantis Wallwork. Pages 9397 in Freeman, T. E., ed. Proc. IV Int. Symp. on Biol. Control of Weeds. Univ. Fla., Gainesville, FL.Google Scholar
21. Del Fosse, E. S., Cromroy, H. L., and Habeck, D. H. 1975. Determination of the feeding mechanism of the waterhyacinth mite. Hyacinth Control J. 13:5355.Google Scholar
22. Del Fosse, E. S., Sutton, D. L., and Perkins, B. D. 1976. Combination of the mottled waterhyacinth weevil and the white amur for biological control of waterhyacinth. J. Aquat. Plant Manage. 14:6467.Google Scholar
23. DeLoach, C. J. 1975. Evaluation of candidate arthropods for biological control of waterhyacinth: Studies in Argentina. Pages 4450 in Brezonik, P. L. and Fox, J. L., eds. Proc. Symp. on Water Qual. Manage. through Biol. Control. Dep. Env. Eng. Sci., Univ. Fla., Gainesville, FL.Google Scholar
24. DeLoach, C. J. and Cordo, H. A. 1976. Ecological studies of Neochetina bruchi and N. eichhorniae on waterhyacinth in Argentina. J. Aquat. Plant Manage. 14:5359.Google Scholar
25. Freeman, T. E. and Charudattan, R. 1985. Cercospora rodmanii Conway, a potential biocontrol agent for waterhyacinth. Tech. Bull. #842, Fla. Argic. Exp. Stn., Univ. Fla., Gainesville, FL. 18 pp.Google Scholar
26. Forno, I. W. 1981. Effects of Neochetina eichhorniae on the growth of waterhyacinth. J. Aquat. Plant Manage. 19:2731.Google Scholar
27. Gallagher, J. E. 1970. Aquatic weed control in the United States. Hyacinth Control J. 8:5459.Google Scholar
28. Gopal, B. and Sharma, K. P. 1981. Water-hyacinth (Eichhornia crassipes), the Most Troublesome Weed of the World. Hindasia Publ., Delhi. 128 pp.Google Scholar
29. Haller, W. T. 1981. Maintenance control of water hyacinth. Aquatics 3(2):67, 11–12.Google Scholar
30. Joyce, J. C. 1977. Selective maintenance control plan, St. Johns River, Florida. Pages 4548 in Proc. Res. Plan. Conf. on the Aquat. Plant Control Prog. Misc. Pap. A–77–3. U.S. Army Eng. Waterways Exp. Stn., Vicksburg, MS.Google Scholar
31. Pennington, J. C. and Theriot, E. A. 1983. Compatibility and infectivity of a Cercospora rodmanii formulation with enhancing agents. Misc. Pap. A–83–6. U.S. Army Eng. Waterways Exp. Stn., Vicksburg, MS.Google Scholar
32. Perkins, B. D. 1974. Arthropods that stress waterhyacinth. PANS 20: 304314.Google Scholar
33. Perkins, B. D. 1977. Preliminary results of integrating chemical and biological controls to combat waterhyacinth. Pages 230235 in Proc. Res. Plan. Conf. on the Aquat. Plant Control Prog. Misc. Pap. A–77–3. U.S. Army Eng. Waterways Exp. Stn., Vicksburg, MS.Google Scholar
34. Pieterse, A. H. 1977. Biological control of aquatic weeds: perspectives for the tropics. Aquat. Bot. 3:133141.Google Scholar
35. Sanders, D. R., Theriot, R. F., and Theriot, E. A. 1982. Organisms impacting waterhyacinth in the Panama Canal. J. Aquat. Plant Manage. 20:2229.Google Scholar
36. Shaw, W. C. 1982. Integrated weed management systems technology for pest management. Weed Sci. 30 (Suppl. 1):212.CrossRefGoogle Scholar
37. Smith, R. J. Jr. 1982. Integration of microbial herbicides with existing pest management programs. Pages 189203 in Charudattan, R. and Walker, H. L., eds. Biological Control of Weeds with Plant Pathogens. John Wiley and Sons, New York.Google Scholar
38. Soerjani, M. 1977. Integrated control of weeds in aquatic areas. Pages 121151 in Fryer, J. D. and Matsunaka, S., eds. Integrated Control of Weeds. Univ. of Tokyo Press, Tokyo.Google Scholar
39. Spencer, N. R. 1974. Insect enemies of aquatic weeds. PANS 20: 444450.Google Scholar
40. Stark, J. D. and Goyer, R. A. 1983. Life cycle and behavior of Neochetina eichhorniae Warner (Coleoptera: Curculionidae) in Louisiana: A biological control agent of waterhyacinth. Environ. Entomol. 12:147150.CrossRefGoogle Scholar
41. Templeton, G. E. 1982. Status of weed control with plant pathogens. Pages 2944 in Charudattan, R. and Walker, H. L., eds. Biological Control of Weeds with Plant Pathogens. John Wiley and Sons, New York.Google Scholar
42. Theriot, E. A. 1981. Large-scale field application of Cercospora rodmanii . Pages 491492 in Proc. 15th Annu. Meet., Aquat. Plant Control Res. Plan. Oper. Rev. Misc. Pap. A–81–3. U.S. Army Eng. Waterways Exp. Stn., Vicksburg, MS.Google Scholar
43. Theriot, E. A. 1982. Large-scale operations management test with insects and pathogens for the control of waterhyacinth in Louisiana. Pages 187192 in Proc. 16th Annu. Meet., Aquat. Plant Control Res. Plan. Oper. Rev. Misc. Pap. A–82–3. U.S. Army Eng. Waterways Exp. Stn., Vicksburg, MS.Google Scholar
44. Vogel, E. and Oliver, A. D. Jr. 1969. Evaluation of Arzama densa as an aid in the control of water hyacinth in Louisiana. J. Econ. Entomol. 62:142145.Google Scholar
45. Wright, A. D. 1980. Biological control of waterhyacinth in Australia. Pages 529535 in Del Fosse, E. S., ed. Proc. V Int. Symp. on Biol. Control of Weeds. Commonw. Sci. Ind. Res. Organ., Canberra, Australia.Google Scholar
46. Wright, A. D. and Center, T. D. 1984. Biological control: Its place in the management of water hyacinth. Pages 793802 in Thyagarajan, G., ed. Proc. Int. Conf. on Water Hyacinth. United Nations Env. Prog., Box 30552, Nairobi, Kenya.Google Scholar
47. Zeiger, C. F. and McGehee, J. T. 1977. Waterhyacinth control plan for the St. Johns river. J. Aquat. Plant Manage. 15: 1012.Google Scholar