Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-23T15:23:58.179Z Has data issue: false hasContentIssue false

Mechanisms of Resistance to Glyphosate in a Ryegrass (Lolium Multiflorum) Biotype from Chile

Published online by Cambridge University Press:  20 January 2017

Paola Michitte*
Affiliation:
Departamento de Química Agrícola y Edafología, Universidad de Córdoba. Campus de Rabanales, Edif. Marie Curie. 14071 Córdoba, España
Rafael De Prado
Affiliation:
Departamento de Química Agrícola y Edafología, Universidad de Córdoba. Campus de Rabanales, Edif. Marie Curie. 14071 Córdoba, España
Nelson Espinoza
Affiliation:
Centro Regional de Investigación, Carillanca, INIA. Km 10 Camino Cajón Vilcún. IX Región. Casilla 58-D. Temuco, Chile
Juan Pedro Ruiz-Santaella
Affiliation:
Departamento de Química Agrícola y Edafología, Universidad de Córdoba. Campus de Rabanales, Edif. Marie Curie. 14071 Córdoba, España
Christian Gauvrit
Affiliation:
UMR Biologie et Gestion des Adventices, INRA. 17 rue Sully. BP 86510, 21065 Dijon Cedex, France
*
Corresponding author's E-mail: pmenduca@yahoo.com

Abstract

Glyphosate behavior was examined in Italian ryegrass plants from Chile that were sensitive (S) and resistant (R) to this herbicide. In order to explain the resistance to glyphosate, contact angles, spray retention, foliar uptake, herbicide translocation, and target enzyme activity were studied. Contact angles of glyphosate solutions at a field concentration were 40° to 45° on the abaxial surface of R leaves as compared to 70° on S. Glyphosate spray retention by R plants was 35% lower than by S plants. Glyphosate uptake by the abaxial leaf surface of R plants was about 40% lower than that of S plants. In addition, in the R plants more glyphosate migrated to the tip of the treated leaves. The target enzyme in R and S plants was sensitive to the herbicide. Based on these and previous results, it is concluded that resistance in this Italian ryegrass biotype results from lower spray retention, lower foliar uptake from the abaxial leaf surface, and altered translocation pattern. The decreases in spray retention and foliar uptake constitute new mechanisms of glyphosate resistance.

Type
Physiology, Chemistry, and Biochemistry
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Amrhein, N., Deus, B., Gehrke, P., and Steinrucken, H. C. 1980. The site of the inhibition of the shikimate pathway by glyphosate. II. Interference of glyphosate with chorismate formation in vivo and in vitro. Plant Physiol. 66:830834.CrossRefGoogle ScholarPubMed
Baerson, S. R., Rodriguez, D. J., Tran, M., Feng, Y., Biest, N. A., and Dill, G. M. 2002. Glyphosate-resistant goosegrass. Identification of a mutation in the target enzyme 5-enolpyruvylshikimate-3-phosphate synthase. Plant Physiol. 129:12651275.CrossRefGoogle ScholarPubMed
Blackman, G. E., Bruce, R. S., and Holly, K. 1958. Studies in the principles of toxicity. V. Interrelationships between specific differences in spray retention and se-lective phytotoxicity. J. Exp. Bot. 9:175205.CrossRefGoogle Scholar
de Ruiter, H., Uffing, A. J. M., Meinen, E., and Prins, A. 1990. Influence of surfactants and plant species on leaf retention of spray solutions. Weed Sci. 38:567572.CrossRefGoogle Scholar
Espinoza, N. and Díaz, J. 2005. Situación de la resistencia de malezas a herbicidas en cultivos anuales en Chile. in. Seminario-Taller Iberoamericano: Resistencia a herbicidas y cultivos transgénicos. Colonia, Uruguay: INIA. 7282.Google Scholar
Feng, P. C. C., Tran, M., Chiu, T., Sammons, R. D., Heck, G. R., and Cajacob, C. A. 2004. Investigations into glyphosate-resistant horseweed (Conyza canadensis): retention, uptake, translocation, and metabolism. Weed Sci. 52:498505.CrossRefGoogle Scholar
Fogg, G. E. 1947. Quantitative studies of the wetting of leaves by water. Proc. Royal Soc. (London) Series B. 134:503522.Google ScholarPubMed
Franz, J. E., Mao, M. K., and Sikorski, J. A. 1997. Uptake, transport, and metabolism of glyphosate in plants. Pages 143186. in Franz, J.E., Mao, M.K., Sikorski, J.A. eds. Glyphosate: A Unique and Global Herbicide. Washington DC American Chemical Society.Google Scholar
Gaitonde, M. K. and Gordon, M. W. 1958. A microchemical method for the detection and determination of shikimic acid. J. Biol. Chem. 230:10431050.CrossRefGoogle ScholarPubMed
Heap, I. 2007. International Survey of Herbicide Resistant Weeds. http://www.weedscience.org/in.asp. Accessed April 24, 2007.Google Scholar
Lorraine-Colwill, D. F., Powles, S. B., Hawkes, T. R., Hollinshead, P. H., Warner, S. A. J., and Preston, C. 2003. Investigations into the mechanism of glyphosate resistance in Lolium rigidum . Pestic. Biochem. Physiol. 74:6272.CrossRefGoogle Scholar
Lydon, J. and Duke, S. O. 1988. Glyphosate induction of elevated levels of hydroxbenzoic acids in higher plants. J. Agric. Food Chem. 36:813818.CrossRefGoogle Scholar
Michitte, P. 2005. Mecanismos de resistencia a inhibidores de la EPSP sintasa y ACCasa en un biotipo de Lolium multiflorum de Chile austral. [Mechanisms of resistance to inhibitors of EPSP synthase and ACCase in a Lolium multiflorum biotype of South Chile.] . Cordoba, Spain Universidad de Córdoba.Google Scholar
Michitte, P., De Prado, R., Espinoza, N., and Gauvrit, C. 2005. Glyphosate resistance in a Chilean Lolium multiflorum . Comm. Agric. Appl. Biol. Sci. 70/3:507513.Google Scholar
Michitte, P., Gauvrit, C., Heredia, A., and De Prado, R. 2004. Resistance to glyphosate in Lolium multiflorum: involvement of epicuticular waxes? 597602. in. XIIth International Conference on Weed Biology. Dijon, France Association Française de la Protection des Plantes.Google Scholar
Mueller, T. C., Massey, J. H., Hayes, R. M., Main, C. L., and Stewart, C. N. Jr. 2003. Shikimate accumulates in both glyphosate-sensitive and glyphosate-resistant horseweed (Conyza canadensis L. Cronq.). J. Agric. Food Chem. 51:680684.CrossRefGoogle ScholarPubMed
Ng, C. H., Wickneswari, R., Salmijah, S., Teng, Y. T., and Ismail, B. S. 2003. Gene polymorphisms in glyphosate-resistant and -susceptible biotypes of Eleusine indica from Malaysia. Weed Res. 43:108115.CrossRefGoogle Scholar
Powles, S. B. and Preston, C. 2006. Evolved glyphosate resistance in plants: biochemical and genetic basis of resistance. Weed Technol. 20:282289.CrossRefGoogle Scholar
Richardson, R. G. 1984. Fluorescent tracer technique for measuring total herbicide deposits on plants. Australian Weeds. 3:123124.Google Scholar
Schott, J. J., Dufour, J. L., and Gauvrit, C. 1991. Effects of adjuvants on herbicidal action. III – Effects of petroleum and rapeseed oils on diclofop-methyl action on ryegrass. Agronomie. 11:2734.CrossRefGoogle Scholar
Singh, B. K. and Shaner, D. L. 1998. Rapid determination of glyphosate injury to plants and identification of glyphosate-resistant plants. Weed Technol. 12:527530.CrossRefGoogle Scholar
Wakelin, A. M., Lorraine-Colwill, D. F., and Preston, C. 2004. Glyphosate resistance in four different populations of Lolium rigidum is associated with reduced translocation of glyphosate to meristematic zones. Weed Res. 44:453459.CrossRefGoogle Scholar
Weast, R. C. 1971. Uranin. In Weast, R.C. ed. Handbook of Chemistry and Physics. Cleveland The Chemical Rubber Company. C-530.Google Scholar