Skip to main content Accessibility help
×
Home
Hostname: page-component-54cdcc668b-v2dhk Total loading time: 0.223 Render date: 2021-03-09T08:30:30.948Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Cotton Stage of Growth Determines Sensitivity to 2,4-D

Published online by Cambridge University Press:  20 January 2017

Seth A. Byrd
Affiliation:
Department of Soil and Crop Sciences, Texas A&M University, Lubbock, TX 79403
Guy D. Collins
Affiliation:
Department of Crop Science, North Carolina State University, Rocky Mount, NC 27801
A. Stanley Culpepper
Affiliation:
Department of Crop and Soil Sciences, University of Georgia, Tifton, GA 31793
Darrin M. Dodds
Affiliation:
Department of Plant and Soil Sciences, Mississippi State University, Starkville, MS 39762
Keith L. Edmisten
Affiliation:
Department of Crop Science, North Carolina State University, Raleigh, NC 27695
David L. Wright
Affiliation:
Agronomy Department, University of Florida, Quincy, FL 32351
Gaylon D. Morgan
Affiliation:
Department of Soil and Crop Sciences, Texas A&M University, College Station, TX 77843
Paul A. Baumann
Affiliation:
Department of Soil and Crop Sciences, Texas A&M University, College Station, TX 77843
Peter A. Dotray
Affiliation:
Texas Tech University, Lubbock, TX 79409
Misha R. Manuchehri
Affiliation:
Texas Tech University, Lubbock, TX 79409
Andrea Jones
Affiliation:
Department of Plant Sciences, University of Missouri, Portageville, MO 63873
Timothy L. Grey
Affiliation:
Department of Crop and Soil Sciences, University of Georgia, Tifton, GA 31793
Theodore M. Webster
Affiliation:
Crop Protection and Management Research Unit, USDA-ARS, Tifton, GA 31793
Jerry W. Davis
Affiliation:
Experimental Statistics, University of Georgia, Griffin, GA 30223
Jared R. Whitaker
Affiliation:
Department of Crop and Soil Sciences, University of Georgia, Tifton, GA 31793
Phillip M. Roberts
Affiliation:
Department of Entomology, University of Georgia, Tifton, GA
John L. Snider
Affiliation:
Department of Crop and Soil Sciences, University of Georgia, Tifton, GA 31793
Wesley M. Porter
Affiliation:
Department of Crop and Soil Sciences, University of Georgia, Tifton, GA 31793
Corresponding
E-mail address:

Abstract

The anticipated release of EnlistTM cotton, corn, and soybean cultivars likely will increase the use of 2,4-D, raising concerns over potential injury to susceptible cotton. An experiment was conducted at 12 locations over 2013 and 2014 to determine the impact of 2,4-D at rates simulating drift (2 g ae ha−1) and tank contamination (40 g ae ha−1) on cotton during six different growth stages. Growth stages at application included four leaf (4-lf), nine leaf (9-lf), first bloom (FB), FB + 2 wk, FB + 4 wk, and FB + 6 wk. Locations were grouped according to percent yield loss compared to the nontreated check (NTC), with group I having the least yield loss and group III having the most. Epinasty from 2,4-D was more pronounced with applications during vegetative growth stages. Importantly, yield loss did not correlate with visual symptomology, but more closely followed effects on boll number. The contamination rate at 9-lf, FB, or FB + 2 wk had the greatest effect across locations, reducing the number of bolls per plant when compared to the NTC, with no effect when applied at FB + 4 wk or later. A reduction of boll number was not detectable with the drift rate except in group III when applied at the FB stage. Yield was influenced by 2,4-D rate and stage of cotton growth. Over all locations, loss in yield of greater than 20% occurred at 5 of 12 locations when the drift rate was applied between 4-lf and FB + 2 wk (highest impact at FB). For the contamination rate, yield loss was observed at all 12 locations; averaged over these locations yield loss ranged from 7 to 66% across all growth stages. Results suggest the greatest yield impact from 2,4-D occurs between 9-lf and FB + 2 wk, and the level of impact is influenced by 2,4-D rate, crop growth stage, and environmental conditions.

La anticipada liberación de cultivares Enlist™ de algodón, maíz, y soja probablemente incrementará el uso de 2,4-D, aumentando así la preocupación del daño potencial en algodón susceptible. Se realizó un experimento en 12 localidades durante 2013 y 2014 para determinar el impacto de 2,4-D a dosis de deriva simulada (2 g ae ha−1) y de contaminación en tanque (40 g ae ha−1) sobre algodón durante seis estadios de crecimiento diferente. Los estadios de crecimiento al momento de aplicación incluyeron cuatro hojas (4-lf), nueve hojas (9-lf), primer brote florar (FB), FB + 2 semanas (wk), FB + 4 wk, y FB + 6 wk. Las localidades fueron agrupadas según el porcentaje de pérdida de rendimiento al compararse con el testigo sin tratamiento (NTC), teniendo el grupo I la menor pérdida de rendimiento y el grupo III la mayor. La epinastia producto de 2,4-D fue más pronunciada con aplicaciones durante los estadios de crecimiento vegetativo. Importantemente, la pérdida en el rendimiento no correlacionó con la sintomatología visual, pero siguió de cerca los efectos en el número de frutos. La dosis de contaminación a 9-lf, FB, o FB + 2 wk tuvo el mayor efecto en todas las localidades, reduciendo el número de frutos por planta cuando se comparó con el NTC, pero sin tener efecto cuando se aplicó en FB + 4 wk o después. La reducción en el número de frutos no fue detectable con la dosis de deriva excepto en el grupo III cuando se aplicó en el estadio FB. El rendimiento fue influenciado por la dosis de 2,4-D y el estadio de crecimiento del algodón. Considerando todas las localidades, las pérdidas de rendimiento mayor a 20% ocurrieron en 5 de 12 localidades cuando se aplicó la dosis de deriva entre 4-lf y FB + 2 wk (mayor impacto a FB). Para la dosis de contaminación, la pérdida en rendimiento fue observada en todas las 12 localidades. Al promediar todas las localidades, la pérdida de rendimiento varió entre 7 y 66% entre todos los estadios de crecimiento. Los resultados sugieren que el mayor impacto en el rendimiento causado por 2,4-D ocurre entre 9-lf y FB + 2 wk, y el nivel de impacto es influenciado por la dosis de 2,4-D, el estadio de crecimiento, y las condiciones ambientales.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below.

Footnotes

Associate Editor for this paper: Lawrence Steckel, University of Tennessee.

References

Abel, S (2015) Dow AgroSciences Company Petition for Determination of Nonregulated Status of 2,4-D and Glufosinate-Resistant DAS-81910-7 Cotton. USDA Environmental Assessment Google Scholar
Egan, JF, Barlow, KM, Mortensen, DA (2014) A meta-analysis on the effects of 2,4-D and dicamba drift on soybean and cotton. Weed Sci 62: 193206 CrossRefGoogle Scholar
Everitt, JD, Keeling, JW (2009) Cotton growth and yield response to simulated 2,4-D and dicamba drift. Weed Technol 23: 503506 CrossRefGoogle Scholar
Johnson, VA, Fisher, LR, Jordan, DL, Edminsten, KE, Stewart, AM, York, AC (2012) Cotton, peanut, and soybean response to sublethal rates of dicamba, glufosinate, and 2,4-D. Weed Technol 26: 195206 CrossRefGoogle Scholar
Jones, MA, Snipes, CE (1999) Tolerance of transgenic cotton to topical applications of glyphosate. J Cotton Sci 3: 1926 Google Scholar
Krieg, DR (2000) Cotton water relations. Pages 715 in Oosterhuis, DM, ed. Summaries of Cotton Research in 2000. University of Arkansas Agricultural Experiment Station, Special Report 198 Google Scholar
Kruger, GR, Davis, VM, Weller, SC, Johnson, WG (2008) Response and survival of rosette-stage horseweed (Conyza canadensis) after exposure to 2, 4–D. Weed Sci 56: 748752 CrossRefGoogle Scholar
Kruger, GR, Davis, VM, Weller, SC, Johnson, WG (2010) Growth and seed production of horseweed (Conyza canadensis) populations after exposure to postemergence 2, 4–D. Weed Sci 58: 413419 CrossRefGoogle Scholar
Marple, ME, Al-Khatib, K, Peterson, DE (2008) Cotton injury and yield as affected by simulated 2,4-D and dicamba. Weed Technol 22: 609614 CrossRefGoogle Scholar
Marple, ME, Al-Khatib, K, Shoup, D, Peterson, DE, Claassen, M (2007) Cotton response to simulate drift of seven hormonal-type herbicides. Weed Technol 21: 987992 CrossRefGoogle Scholar
McIlrath, WJ, Ergle, DR, Dunlap, AA (1951) Persistence of 2,4-D stimulus in cotton plants with reference to its transmission to the seed. Bot Gaz 112: 511518 CrossRefGoogle Scholar
Mortensen, DA, Egan, JF, Maxwell, BD, Ryan, MR, Smith, RG (2012) Navigating a critical juncture for sustainable weed management. BioScience 62: 7585 CrossRefGoogle Scholar
Peterson, GE (1967) The discovery and development of 2, 4–D. Agric Hist 41: 243254 Google Scholar
Pettigrew, WT (2004) Moisture deficit effects on cotton lint yield, yield components, and boll distribution. Agron J 96: 377383 CrossRefGoogle Scholar
Plant, RE, Kerby, TA (1995) CPM: Software for cotton final plant mapping. Agron J 87: 11431147 CrossRefGoogle Scholar
Riar, DS, Norsworthy, JK, Steckel, LE, Stephenson, DO IV, Bond, JA (2013) Consultant perspectives on weed management needs in Midsouthern United States cotton: a follow-up survey. Weed Technol 27: 778787 CrossRefGoogle Scholar
Richburg, JS, Wright, JR, Braxton, LB, Robinson, AE, inventors; Dow Agrosciences, assignee (2012) July 12. Increased tolerance of DHT-enabled plants to auxinic herbicides resulting from moiety differences in auxinic molecule structures . U.S. patent 13,345,236Google Scholar
Robinson, AP, Simpson, DM, Johnson, WG (2012) Summer annual weed control with 2,4-D and glyphosate. Weed Technol 26: 657660 CrossRefGoogle Scholar
Robertson, B, Bednarz, C, Burmester, C (2007) Growth and development—the first 60 days. Cotton Physiol Today 13: 15 Google Scholar
Saxton, AM (1998) A macro for converting mean separation output to letter groupings in Proc Mixed. Pages 12431246 in Proceedings of the 23rd SAS Users Group. Cary, NC: SAS Institute Google Scholar
Sciumbato, AS, Chandler, JM, Senseman, SA, Bovey, RW, Smith, KL (2004) Determining exposure to auxin-like herbicides. I. Quantifying injury to cotton and soybean. Weed Technol 18: 11251134 CrossRefGoogle Scholar
Siebert, JD, Griffin, JL, Jones, CA (2004) Red morningglory (Ipomoea coccinea) control with 2,4-D and alternative herbicides. Weed Technol 18: 3844 CrossRefGoogle Scholar
Staten, G (1946) Contamination of cotton fields by 2,4-D or hormone-type weed sprays. Agron J 38: 536544 CrossRefGoogle Scholar
United States Department of Agriculture, Natural Resources Conservation Service (2015) Web Soil Survey. http://websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx. Accessed: February 9, 2015Google Scholar
White, RH, Worsham, AD (1990) Control of legume cover crops in no-till corn (Zea mays) and cotton (Gossypium hirsutum). Weed Technol 4: 5762 Google Scholar
Williams, MC, Slife, FW, Hanson, JB (1960) Absorption and translocation of 2,4-D in several annual broadleaved weeds. Weeds 8: 244255 CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 82 *
View data table for this chart

* Views captured on Cambridge Core between 20th January 2017 - 9th March 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Cotton Stage of Growth Determines Sensitivity to 2,4-D
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Cotton Stage of Growth Determines Sensitivity to 2,4-D
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Cotton Stage of Growth Determines Sensitivity to 2,4-D
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *