Skip to main content
×
×
Home

Characterization of Fluazifop-P-butyl Activity on Bristly Starbur (Acanthospermum hispidum)

  • Travis C. Teuton (a1), Gregory E. MacDonald (a1), Christopher L. Main (a2) and Barry J. Brecke (a3)
Abstract

During routine use of fluazifop-P-butyl for grass control, county extension agents in Georgia observed control of bristly starbur in grower fields. Experiments to characterize the activity of fluazifop-P-butyl on bristly starbur were conducted under greenhouse conditions in Gainesville, FL, during 2001 and 2002. Fluazifop-P-butyl activity was characterized as a function of herbicide rate and time after application. Commercially available fluazifop-P-butyl was compared to technical fluazifop-P-butyl as a function of herbicide rate and bristly starbur height. Finally, injury to bristly starbur was evaluated when clethodim, diclofop, fluazifop-P-butyl, haloxyfop, quizalofop-p, and sethoxydim were applied at two growth stages. Fluazifop-P-butyl caused >90% injury to bristly starbur with all other post graminicides displaying <8% injury. Nonlinear regression revealed a sigmoidal response of bristly starbur injury to fluazifop-P-butyl. Estimates for 50 and 90% bristly starbur injury (I50 and I90) were 0.07 and 0.14 kg ai/ha, respectively. There was no difference in activity of technical and commercial fluazifop-P-butyl formulations. There was a differential response of bristly starbur to fluazifop-P-butyl over time as a function of plant height at the time of treatment. However, 14 days after treatment (DAT) all treatments displayed >89% injury. Bristly starbur response to fluazifop-P-butyl was similar to injury associated with contact-type herbicides.

Copyright
Corresponding author
E-mail address: teutont@missouri.edu
References
Hide All
Askew, S. D., Shaw, D. R., and Street, J. E. 2000. Graminicide application timing influences red rice (Oryza sativa) control and seedhead reduction in soybean (Gycine max). Weed Technol. 14:176181.
Becerril, J. M. and Duke, S. O. 1989. Protoporphyrin IX content correlates with activity of photobleaching herbicides. Plant Physiol. 90:11751181.
Bradley, K. W. and Hagood, E. S. 2001. Identification of a johnsongrass (Sorghum halepense) biotype resistant to aryloxypenoxypropionate and cyclohexanedione herbicides in Virginia. Weed Technol. 15:623627.
Burton, J. D., Gronwald, J. W., Somers, D. A., Gengenbach, B. G., and Wyse, D. L. 1989. Inhibition of corn acetyl-CoA carboxylase by cyclohexanedione and aryloxyphenoxy propionate herbicides. Pestic. Biochem. Physiol. 34:7685.
Bus, J. S., Aust, S. D., and Gibson, J. E. 1974. Superoxide and singlet oxygen catalyzed lipid peroxidation as a possible mechanism for PQ (methyl-viologen) toxicity. Biochem. Biophys. Res. Commun. 58:749755.
Devine, M., Duke, S. O., and Fedtke, C. 1993a. Physiology of Herbicide Action. Englewood Cliffs, NJ: Prentice Hall. Pp. 230233.
Devine, M., Duke, S. O., and Fedtke, C. 1993b. Physiology of Herbicide Action. Englewood Cliffs, NJ: Prentice Hall. Pp. 152156.
Devine, M., Duke, S. O., and Fedtke, C. 1993c. Physiology of Herbicide Action. Englewood Cliffs, NJ: Prentice Hall. Pp. 163166.
Di Tomaso, J. M., Stone, A. E., and Brown, P. H. 1993. Inhibition of lipid synthesis by diclofop-methyl is age dependent in roots of oat and corn. Pestic. Biochem. Phys. 45:210219.
Evers, G. W. 2001. Herbicides for desiccating dallisgrass (Paspalum dilatatum)–bermudagrass (Cynodon dactylon) pasture sod prior to overseeding with annual ryegrass (Lolium muliflorum). Weed Technol. 16:235238.
Grichar, G. W., Besler, B. A., Brewer, K. D., and Lemon, R. G. 2003. Interaction of pyrithiobac and graminicides for weed control in cotton (Gossypium hirsutum). Weed Technol. 17:461466.
Hall, D. W. and Vandiver, V. V. 2003. Bristly Starbur, Acanthospermum hispidum D.C. University of Florida Cooperative Extension Service: Web page: http://edis.ifas.ufl.edu/BODY_FW004. Accessed: January 20, 2004.
Luo, X. Y. and Matsumoto, H. 2002. Susceptability of a broadleaf weed, Acanthospermum hispidum, to the grass herbicide fluazifop-butyl. Weed Biol. Manage. 2:98103. DOI:101046/j.1445-664.2002.00053.x.
Manley, B. S., Wilson, H. P., and Hines, T. E. 2002. Management programs and crop rotations influence populations of annual grass weeds and yellow nutsedge. Weed Sci. 50:112119.
Moss, S. R., Cocker, K. M., Brown, A. C., Hall, L., and Field, L. M. 2003. Characterization of target-site resistance to ACCase-inhibiting herbicides in the weed Alopecurus myosuroides (black-grass). Pest Manage. Sci. 59:190201.
Paulsgrove, M. D. and Wilcut, J. W. 1999. Weed management in bromoxynil-resistant Gossypium hirsutum . Weed Sci. 47:596601.
Porter, W. C. 1993. Postemergence grass control in sweet potatoes (Ipomoea batatas). Weed Technol. 7:812815.
Rabinowitch, H. D. and Fridovich, I. 1983. Superoxide radicals, superoxide dismutases and oxygen toxicity in plants. Photochem. PhotoBiol. 37:679690.
Rendina, A. R. and Felts, J. M. 1988. Cyclohexanedione herbicides are selective and potent inhibitors of acetyl-CoA carboxylase from grasses. Plant Physiol. 86:983986.
[SAS] SAS Institute. 1999. SAS/STAT User's Guide (Version 8). Cary, NC: SAS Institute. Pp. 20832226.
Scott, R. C., Shaw, D. R., Ratliff, R. L., and Newsom, L. J. 1998. Synergism of grass weed control with postemergence combinations of SAN 582 and fluazifop-P, imazethapyr, or sethoxydim. Weed Technol. 12:268274.
Secor, J. and Cseke, C. 1988. Inhibition of acetyl-CoA carboxylase activity by haloxyfop and tralkoxydim. Plant Phys. 86:1012.
Seefeldt, S. S., Jensen, J. E., and Fuerst, E. P. 1995. Log-logistic analysis of herbicide dose–response relationships. Weed Technol. 9:218227.
Vencill, W. K. ed. 2002a. Fluazifop-P-butyl. in Herbicide Handbook. 8th ed. Lawrence, KS: Weed Science Society of America. Pp. 188190.
Vencill, W. K. ed. 2002b. Lactofen. in Herbicide Handbook. 8th ed. Lawrence, KS: Weed Science Society of America. Pp. 269270.
Vencill, W. K. ed. 2002c. Paraquat. in Herbicide Handbook. 8th ed. Lawrence, KS: Weed Science Society of America. Pp. 333335.
Volenberg, D. and Stoltenberg, D. 2002. Altered acetyl-coenzyme A carboxylase confers resisistance to clethodim, fluazifop-P-butyl, and sethoxydim in Setaria faberi and Digitaria sanguinalis . Weed Res. 42:342350.
Walker, R. H., Wells, L. W., and McGuire, J. A. 1989. Bristly starbur (Acanthospermum hispidum) interference with peanuts (Arachis hypogaea). Weed Sci. 37:196200.
Webster, T. M. 2001. Weed survey—southern states. Proc. South. Weed Sci. Soc. 54:244259.
Webster, T. M., Wilcut, J. W., and Coble, H. D. 1997. Influence of AC 263,222 rate and application method on weed management in peanut (Arachis hypogaea). Weed Technol. 11:520526.
Yasin, J. Z., Althahabi, S., Abuirmaileh, B. E., Saxena, M. C., and Haddad, N. I. 1995. Chemical weed control in chickpea and lentil. Int. J. Pest Manage. 41:6065.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Weed Technology
  • ISSN: 0890-037X
  • EISSN: 1550-2740
  • URL: /core/journals/weed-technology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed