Skip to main content Accessibility help
×
×
Home

The Potential Use of Vinegar and a Clove Oil Herbicide for Weed Control in Sweet Corn, Potato, and Onion

  • G. J. Evans (a1) and R. R. Bellinder (a1)

Abstract

Natural products might provide an organic means of weed control. Our objective was to evaluate the potential use of vinegar and a clove-oil product with regard to how volume, concentration, and application timing affect weed control and crop response. Treatments included broadcast applications of 200- and 300-grain vinegar at 318 liters per hectare (L/ha), 150- and 200-grain vinegar at 636 L/ha, a 3.4% v/v clove oil mixture in water (318 L/ha), and a 1.7% clove oil mixture in 200-grain vinegar (318 L/ha). Field trials were conducted in sweet corn, onion, and potato. Weed control, weed biomass, crop injury, and yield data were collected. Corn treated at 15 and at 30 to 45 cm was initially burned and stunted by these products. By 4 wk after application much of the initial injury was outgrown. Late applications significantly reduced yields of early-maturing sweet corn ‘Trinity’. With the exception of the 200-grain vinegar (318 L/ha) treatment, early applications to sweet corn ‘Avalon’ did not reduce marketable yield. Two hundred-grain vinegar (636 L/ha) applied to pre-emergence–flag stage onion reduced the duration of the first handweeding by 59 to 67%. All treatments reduced onion yields when treated at the 2-leaf stage. Potato treated early (2 to 10 cm) and late (30 cm) were injured by all vinegar treatments 59 to 83%, 1 d after treatment (DAT). Potato yield losses were insignificant with applications of 3.4% clove oil and with some low-volume (318 L/ha) vinegar treatments. Product efficacy was dependent on the weed species and their size at the time of application. Weed control was greatest (83%, 1 DAT) with 200-grain vinegar (636 L/ha). Broadcast applications of vinegar and clove oil have potential for use on young, actively growing sweet corn, onion, and potato.

Copyright

Corresponding author

Corresponding author's E-mail: gje2@cornell.edu.

References

Hide All
Anonymous, , 2008a. Matran EC® Herbicide MSDS. http://www.biconet.com/lawn/infosheets/MatranMSDS.pdf. Accessed: November 20, 2008.
Anonymous, , 2008b. Weed Pharm® Herbicide MSDS. http://pharmsolutions.com/dealerAssets/MSDS/MSDS_Weed_Pharm_07.pdf. Accessed: November 20, 2008.
Ascard, J. 1989. Thermal weed control with flaming in onions. 30th Swedish Crop Protection Conference, Uppsala, Sweden 2:3550.
Ascard, J. and Bellinder, R. R. 1996. Mechanical in-row cultivation in row crops. Pages 11211126. in. Proceedings of the Second International Weed Control Congress. Copenhagen, Denmark.
Balogh, J. C. and Anderson, J. L. 1992. Environmental impacts of turfgrass pesticides. Pages 221222. in Balogh, J. C. and Walker, W. J., editors. Golf Course Management and Construction—Environmental Issues. Chelsea, MI: Lewis.
Barbash, J. E. and Resek, E. A. 1996. Pesticides in ground water: distribution, trends, and governing factors. Chelsea, MI: Ann Arbor Press. Pesticides in the Hydrologic System Series 2:590.
Barnes, J. P. and Putnam, A. R. 1986. Evidence for allelopathy by residues and aqueous extracts of rye (Secale cereale). Weed Sci 34:384390.
Baumann, D. T. 1992. Mechanical weed control with spring tine harrows (weed harrows) in row crops. Pages 123128. in. Proceedings of the Sixth International Symposium on the Biology of Weeds. Dijon, France.
Boydston, R. 2004. Weed control in potato with 200-grain vinegar applied postemergence. Prosser, WA: USDA–ARS.
Brewster, J. L. 1994. Onion and other vegetable alliums. Wallingford, UK: CAB International. 236.
Cardellina, J. H. II 1988. Natural products in the search for new agrochemicals. Pages 305315. in Cutler, H. G., editor. Biologically Active Natural Products: Potential Use in Agriculture. Washington, DC: American Chemical Society.
Chandran, R. S., Stenger, M., and Mandal, M. 2003. Effect of vinegar on potato weed control. [Abstract] Proc. Northeast. Weed Sci. Soc 58:82.
Coffman, C. B., Radhakrishnan, J., and Teasdale, J. R. 2005. Corn and soybean responses to basal applications of vinegar. [Abstract] Proc. Northeast. Weed Sci. Soc 59:79.
Curran, W. S., Lingenfelter, D. D., and Muse, C. B. 2003. Vinegar and clove oil for non-selective control of annual weeds. [Abstract] Proc. Northeast. Weed Sci. Soc 88:21.
Daar, S. 1987. Update: Flame weeding on European farms. IPM Practitioner 9:15.
Dallyn, S. L. 1971. Weed control methods in potatoes. Am. Potato J 48:116128.
Daniels, C. H. 2004. Acetic acid registration letter April 13, 2004. Richmond, WA: Washington State Pest Management Resource Service.
Duke, S. O. 1986. Naturally occurring chemical compounds as herbicides. Champaign, IL: Weed Science Society of America. Reviews of Weed Science. 2:1744.
Forsberg, F. 2004. Vinegar as an herbicide in organic garlic production. Grant number FNE03-461. 111.
Georgis, R. 2003. Efficacy and speed of control of Matran 2 with Humasol and Stylet oil against eight weed species under field conditions. Elmhurst, IL: AgroSci Advanced Agricultural Technologies. Report 866. 7.
Grubinger, V. 1993. Coping with weeds organically. The Grower: New England Vegetable and Small Fruit Newsletter. 93:7.
Hall, M. R., Swanton, C. J., and Anderson, G. W. 1992. The critical period of weed control in grain corn (Zea mays). Weed Sci 40:441447.
Huppatz, J. L. 1990. Essential amino acid biosynthesis provides multiple targets for selective herbicides. Pages 563572. in Casida, J. E., editor. Pesticides and alternatives: Innovative chemical and biological approaches to pest control. New York: Elsevier.
Klonsky, K., Tourte, L., Chaney, D., Livingston, P., and Smith, R. 1994. Cultural practices and sample costs for organic vegetable production on the central coast of California University of California, Giannini Foundation Information Series No. 94-2. 113.
Lax, A. R., Shepherd, H. S., and Edwards, J. V. 1988. Tentoxin, a chlorosis-inducing toxin from Alternaria as a potential herbicide. Weed Technol 2:540544.
Lovett, J. V. 1991. Changing perceptions of allelopathy and biological control. Biol. Agri. Hort 8:89100.
Lydon, J. and Duke, S. O. 1987. Progress toward natural herbicides from plants. Herbs, Spices Med. Plants Digest 5:14.
Melander, B. 1997. Optimization of the adjustment of a vertical axis rotary brush weeder for intra-row weed control in row crops. J. Agric. Eng. Res 68:3950.
Melander, B. 1998. Interactions between soil cultivation in darkness, flaming, and brush weeding when used for in-row weed control in vegetables. Biol. Agric. Hort 16:114.
Padgette, S. R., Re, D. B., Barry, G. F., Eichholtz, D. E., Delannay, H., Fuchs, R. L., Kishore, G. M., and Fraley, R. T. 1996. New weed control opportunities: development of soybeans with a Roundup Ready gene. Pages 5384. in Duke, S. O., editor. Herbicide-Resistant Crops. Boca Raton, FL: CRC.
Radhakrishnan, J., Teasdale, J. R., and Coffman, C. B. 2002. Vinegar as a potential herbicide for organic agriculture. [Abstract] Proc. Northeast. Weed Sci. Soc 56:100.
Radhakrishnan, J., Teasdale, J. R., and Coffman, C. B. 2003. Agricultural applications of vinegar. [Abstract] Proc. Northeast. Weed Sci. Soc 57:6364.
Rice, E. L. 1984. Allelopathy. 2nd ed. New York: Academic Press. 422.
Uva, W. L. 2003. Chapter 9. Vegetables. Pages 1012. in. The New York Economic Handbook. 2004. Cornell University, Ithaca, NY: Department of Applied Economics and Management.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Weed Technology
  • ISSN: 0890-037X
  • EISSN: 1550-2740
  • URL: /core/journals/weed-technology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed