Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-24T12:29:54.627Z Has data issue: false hasContentIssue false

Evaluation of Tribenuron-Methyl on Sulfonylurea-Resistant Lettuce Germplasm

Published online by Cambridge University Press:  20 January 2017

Jayesh B. Samtani
Affiliation:
Hampton Roads AREC, Department of Horticulture, Virginia Polytechnic Institute and State University, 1444 Diamond Springs Road, Virginia Beach, VA 23455
John S. Rachuy
Affiliation:
Department of Plant Sciences, University of California, Davis, 1636 E. Alisal Street, Salinas, CA 93905
Beiquan Mou
Affiliation:
USDA-ARS, 1636 E. Alisal Street, Salinas, CA 93905
Steven A. Fennimore*
Affiliation:
Department of Plant Sciences, University of California, Davis, 1636 E. Alisal Street, Salinas, CA 93905
*
Corresponding author's E-mail: safennimore@ucdavis.edu.

Abstract

A sulfonylurea (SU) herbicide resistance allele discovered in prickly lettuce was previously transferred to domestic lettuce with the cultivar name ‘ID-BR1’. ID-BR1 was acquired, and the SU resistance allele was transferred through traditional breeding methods to five common commercial lettuce types: butterhead, crisphead, green leaf, red leaf, and romaine. Field trials were conducted at Salinas, CA during 2011 and 2012 to evaluate POST applications of tribenuron-methyl (tribenuron) on SU-susceptible and SU-resistant lettuce types. Treatments included a nontreated control, pronamide applied PRE at 1,340 g ai ha−1, and tribenuron at 4, 9, and 17 g ai ha−1 applied POST. Data collected were: weed control, crop injury estimates (0 = safe, 100 = dead), stand counts, and lettuce yields. Injury to lettuce from tribenuron was high in SU-susceptible lettuce types and low in SU-resistant accessions. With the exceptions of a romaine lettuce line that still may have some susceptible individuals, tribenuron did not reduce yield of SU-resistant lettuce, but did reduce the yield of SU-susceptible lettuce. Suppression of weeds such as common groundsel and annual sowthistle was higher with tribenuron than with pronamide. Tribenuron should be considered for registration as a lettuce herbicide for SU-resistant lettuce to improve current weed management options for that crop.

Un alelo de resistencia a herbicidas del grupo sulfonylurea (SU) que había sido descubierto en Lactuca serriola y que fue previamente transferido al cultivar ‘ID-BR1’ de lechuga doméstica. ID-BR1 fue adquirido, y el alelo de resistencia a SU fue transferido mediante métodos tradicionales de mejoramiento genético a cinco tipos de lechuga comercial: butterhead, crisphead, green leaf, red leaf, y romaine. Se realizaron experimentos de campo en Salinas, CA durante 2011 y 2012 para evaluar aplicaciones POST de tribenuron-methyl (tribenuron) sobre tipos de lechuga SU-susceptibles y SU-resistentes. Los tratamientos incluyeron un testigo no-tratado, pronamide aplicado PRE a 1,340 g ai ha−1, y tribenuron a 4, 9, y 17 g ai ha−1 aplicado POST. Los datos colectados fueron: control de malezas, estimados de daño en el cultivo (0 = seguro, 100 = muerto), conteos de plantas del cultivo establecidas, y rendimientos de la lechuga. El daño en la lechuga producido por tribenuron fue alto en los tipos de lechuga SU-susceptible y bajo en las accesiones SU-resistentes. Con las excepciones de una línea de lechuga romaine que todavía podría tener algunos individuos susceptibles, tribenuron no redujo el rendimiento de lechuga SU-resistente, pero sí redujo el rendimiento de lechuga SU-susceptible. La supresión de malezas tales como Senecio vulgaris y Sonchus oleraceus fue mayor con tribenuron que con pronamide. Tribenuron debería ser considerado para ser registrado como herbicida para lechuga SU-resistente para mejorar las opciones de manejo actuales para ese cultivo.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Agamalian, HS, Bell, CE, Canevari, M, Cudney, D, Daugovish, O, DiTomaso, JM, Elmore, C, Fennimore, SA, Fisher, W, Hembree, K, Kempen, H, Lanini, WT, LeStrange, M, McGiffen, M, Campbell, M, Mullen, R, Norris, R, Orloff, S, Poole, G, Orr, J, Prather, T, Schmierer, G, Shrestha, A, Smith, RF, Vargas, R, Wilen, C, Wilson, R, Wright, S (2009) Weed Susceptibility to Herbicides Database. University of California Cooperative Extension, Weed Research Information Center. http://info.ucanr.org/weed_sept/ Accessed June 28, 2013Google Scholar
Agrian (2013a) Kerb SC Specimen label. http://www.agrian.com/labelcenter/results.cfm Accessed June 20, 2013Google Scholar
Agrian (2013b) Sandea Specimen label. http://www.agrian.com/labelcenter/results.cfm Accessed July 1, 2013Google Scholar
Agrian (2013c) Express Specimen label. http://www.agrian.com/labelcenter/results.cfm Accessed July 1, 2013Google Scholar
Alston, JM (2004) Horticultural biotechnology faces significant economic and market barriers. Cal Agric 58:8088 CrossRefGoogle Scholar
Beyer, EM, Duffy, MJ, Hay, JV, Schlueter, DD (1988) Sulfonylureas. Pages 117189 in Kearney, PC, Kaufman, DD, eds. Herbicides: Chemistry, Degradation, and Mode of Action. Volume 3. New York: Marcel Dekker Google Scholar
Boydston, RA (2007) Potato and weed response to postemergence-applied halosulfuron, rimsulfuron and EPTC. Weed Technol 21:465469 Google Scholar
[CA-DPR] California Department of Pesticide Regulation (2013) Summary of Pesticide Use Report Data 2011. http://www.cdpr.ca.gov/docs/pur/pur11rep/comrpt11.pdf Accessed January 11, 2014Google Scholar
DiTomaso, JM, Healy, EA (2007) Weeds of California and Other Western States. University of California Agricultural and Natural Resources. Publication 3488Google Scholar
Dittmar, PJ, Monks, DW, Jennings, KM, Booker, FL (2012) Tolerance of tomato to herbicides applied through drip irrigation. Weed Technol 26:684690 Google Scholar
Eberlein, CV, Guttieri, MJ, Mallory-Smith, CA, Thill, DC, Baerg, RJ (1997) Altered acetolactate synthase activity in ALS-inhibitor resistant prickly lettuce (Lactuca serriola). Weed Sci 45:212217 Google Scholar
Felix, J, Fennimore, SA, Rachuy, JS (2012) Response of alfalfa, green onion, dry bulb onion, sugar beet, head lettuce and carrot to imazasulfuron soil residues 2 years after application. Weed Technol 26:769776 Google Scholar
Fennimore, SA, Doohan, DJ (2008) The challenges of specialty crop weed control, future directions. Weed Technol 22:364372 Google Scholar
Fennimore, SA, Rachuy, JS, Valdez, JA (2011) Safe lettuce planting intervals following herbicide use on fallow beds. Weed Technol 25:103106 Google Scholar
Fennimore, SA, Smith, RF, Tourte, L, LeStrange, M, Rachuy, JS (2014) Evaluation and economics of a rotating cultivator in bok choy, celery, lettuce and radicchio. Weed Technol. 28:176188.Google Scholar
Fennimore, SA, Umeda, K (2003) Time of glyphosate application in glyphosate-tolerant lettuce. Weed Technol 17:738746 Google Scholar
Guttieri, MJ, Eberlein, CV, Mallory-Smith, CA, Thill, DC, Hoffman, DL (1992) DNA sequence variation in domain A of the acetolactate synthase genes of herbicide-resistant and -susceptible weed biotypes. Weed Sci 40:670676 Google Scholar
Haar, MJ, Fennimore, SA (2003) Evaluation of integrated practices for common purslane (Portulaca oleracea) management in lettuce (Lactuca sativa). Weed Technol 17:229233 Google Scholar
Jackson, LE, Ramirez, I, Yokota, R, Fennimore, SA, Koike, ST, Henderson, D, Chaney, WE, Klonsky, K (2004) On-farm assessment of soil quality: impacts of cover crops, compost, and tillage practices on vegetable yield, soil, weeds, pests and economics. Agric Ecosyst Environ 103:443463 Google Scholar
Jocic, S, Malidiza, G, Cvejic, S, Hladini, N, Miklic, V, Skoric, D (2011) Development of sunflower hybrids tolerant to tribenuron-methyl. Genetika 43:175182 Google Scholar
Lanini, WT, Le Strange, M (1991) Low-input management of weeds in vegetable fields. Cal Agric 45:1113 Google Scholar
Mallory-Smith, CA, Thill, DC, Dial, MJ (1990a) Identification of sulfonylurea herbicide-resistant prickly lettuce (Lactuca serriola). Weed Technol 4:163168 Google Scholar
Mallory-Smith, CA, Thill, DC, Dial, MJ (1993) ID-BR1: sulfonylurea herbicide-resistant lettuce germplasm. HortScience 28:6364 Google Scholar
Mallory-Smith, CA, Thill, DC, Dial, MJ, Zemetra, RS (1990b) Inheritance of sulfonylurea herbicide resistance in Lactuca spp. Weed Technol 4:787790 Google Scholar
Mou, B (2011) Mutations in lettuce improvement. Int J Plant Genom. article 723518. 7 p. DOI: CrossRefGoogle Scholar
Nagata, RT, Dusky, JA, Torres, AC, Cantliffe, DJ, Ferl, RJ, Bewick, TA (1992) Development and breeding of herbicide tolerant lettuce. Proc Fla State Hort Soc 10:358361 Google Scholar
Norsworthy, JK, Meister, CW (2007) Tolerance of cantaloupe to postemergence applications of rimsulfuron and halosulfuron. Weed Technol 21:3036 Google Scholar
Rubatzky, VE, Yamaguchi, M (1997) World Vegetables, Principles, Production and Nutritive Values. 2nd edn. New York: Chapman and Hall.Google Scholar
Ryder, EJ (1999) Crop production science. Pages 7989 in Horticulture 9: Lettuce, Endive and Chicory., Wallingford, UK: CABI Google Scholar
Smith, RF, Fennimore, SA, LeStrange, M (2007a) Lettuce Integrated Weed Management. University of California Integrated Pest Management Program. http://www.ipm.ucdavis.edu/PMG/r441700111.html Accessed June 29, 2013Google Scholar
Smith, RF, Fennimore, SA, LeStrange, M (2007b) Lettuce Herbicide Treatment Table. University of California Integrated Pest Management Program http://www.ipm.ucdavis.edu/PMG/r441700411.html Accessed June 27, 2013Google Scholar
Tan, S, Evans, RR, Dahmer, ML, Singh, BK, Shaner, DL (2005) Imidazolinone-tolerant crops: history, current status and future. Pest Manag Sci 61:246257 Google Scholar
Turini, T, Cahn, M, Cantwell, M, Jackson, L, Koike, S, Natwick, E, Smith, R, Subbarao, K, Takele, E (2011) Iceberg lettuce production in California. University of California Vegetable Research and Information Center. http://anrcatalog.ucdavis.edu/pdf/7215.pdf Accessed June 7, 2013Google Scholar
[USDA-NASS] U.S. Department of Agriculture, National Agricultural Statistics Service (2013) USDA Vegetables 2012 Summary. Web page: http://usda01.library.cornell.edu/usda/current/VegeSumm/VegeSumm-01-29-2013.pdf Accessed June 4, 2013Google Scholar