Skip to main content Accessibility help
×
Home
Hostname: page-component-684899dbb8-p6h7k Total loading time: 0.32 Render date: 2022-05-28T07:49:27.630Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true }

DNA Vaccines against Avian Influenza: current research and future prospects

Published online by Cambridge University Press:  25 February 2013

S. ULLAH
Affiliation:
NUST Center of Virology and Immunology, National University of Science and Technology, Islamabad, Pakistan
N. RIAZ
Affiliation:
NUST Center of Virology and Immunology, National University of Science and Technology, Islamabad, Pakistan
S. UMAR
Affiliation:
NUST Center of Virology and Immunology, National University of Science and Technology, Islamabad, Pakistan
M.A.A. SHAH*
Affiliation:
Depament of Pathobiology, PMAS Arid Agriculture University, Rawalpindi, Pakistan
*
Corresponding author: ayubkb@gmail.com
Get access

Abstract

Avian influenza is a highly pathogenic poultry disease found around the globe. It is caused by different strains of avian influenza virus. The H5N1 strain is not spread worldwide in humans, although, sporadic contaminations have been reported. It is known that the virus spreads from animals to humans however, there is concern regarding the evolution of the virus and that it is now possible for the virus to spread from human to human. There is currently no vaccine available that can act against all strains of the virus, although some vaccines have reached clinical trial stage. Regardless, there is a great need to develop a vaccine which will be effective against all strains of avian influenza. This review will focus on recent advances with special reference to the development of DNA vaccines against avian influenza. The specific importance, the hurdles to development and the possible future strategies for the development of DNA vaccines against multiple strains of avian influenza will be discussed.

Type
Reviews
Copyright
Copyright © World's Poultry Science Association 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

ANDREW, W.P. and GLASS, K. (2007) Dynamic patterns of avian and human influenza in east and Southeast Asia. Lancet Infectious Diseases 7: 543-48.Google Scholar
BELZ, G.T., BEDOUI, S., KUPRESANIN, F., CARBONE, F.R. and HEATH, W.R. (2007) Minimal activation of memory CD8 (+) T cell by tissue-derived dendritic cells favors the stimulation of naive CD8 (+) T cells. Nature Immunology 8(10): 1060-6.CrossRefGoogle ScholarPubMed
CATANZARO, A.T., ROEDERER, M., KOUP, R.A., BAILER, R.T., ENAMA, M.E., NASON, M.C., MARTIN, J.E., RUCKER, S., ANDREWS, C.A., GOMEZ, P.L., MASCOLA, J.R., NABEL, G.J. and GRAHAM, B.S. (2007) Phase I clinical evaluation of a six-plasmid multiclade HIV-1 DNA candidate vaccine. Vaccine 25: 4085-4092.CrossRefGoogle ScholarPubMed
CHARLOTTE, J., EMILIA, V. and PUNAM, M. (2010) Estimates of the Transmissibility of the 1968 (Hong Kong) Influenza Pandemic: Evidence of Increased Transmissibility between Successive Waves. American Journal Epidemiology 171(4): 465-478.Google Scholar
CHEN, H., SMITH, G.J., LI, K.S., WANG, J., FAN, X.H., RAYNER, J.M., VIJAYKRISHNA, D., ZHANG, J.X., ZHANG, L.J., GUO, C.T., CHEUNG, C.L., XU, K.M., DUAN, L., HUANG, K., QIN, K., LEUNG, Y.H., WU, W.L., LU, H.R., CHEN, Y., XIA, N.S., NAIPOSPOS, T.S., YUEN, K.Y., HASSAN, S.S., BAHRI, S., NGUYEN, T.D., WEBSTER, R.G., PEIRIS, J.S. and GUAN, Y. (2006) Establishment of multiple sublineages of H5N1 influenza virus in Asia: implications for pandemic control. Proceedings of the National Academy of Sciences USA 103: 2845-2850.CrossRefGoogle Scholar
CHEN, M.W. (2008) A consensus-hemagglutinin-based DNA vaccine that protects mice against divergent H5N1 influenza viruses. Proceedings of the National Academy of Sciences USA 105: 13538-13543.CrossRefGoogle Scholar
CHEN, M.W., LIAOA, H.Y., HUANG, Y., JAN, J.T., HUANG, C.C., REN, C.T., WU, C.Y., CHENG, T.R., DAVID, D.H. and WONG, C.H. (2011) Broadly neutralizing DNA vaccine with specific mutation alters the antigenicity and sugar-binding activities of influenza hemagglutinin. Proceedings of the National Academy of Sciences 108: 3510-3515.CrossRefGoogle ScholarPubMed
CHRIS, J.F. and MAÏ, Y. (2006) Asymptomatic infection with highly pathogenic avian influenza H5N1 in wild birds: how sound is the evidence? Virology Journal 3: 96.Google Scholar
CHUTINIMITKUL, S., SONGSERM, T., AMONSIN, A., PAYUNGPORN, S., SUWANNAKARN, K., DAMRONGWATANAPOKIN, S., CHAISINGH, A., NUANSRICHAY, B., CHIEOCHANSIN, T., THEAMBOONLERS, A. and POOVORAWAN, Y. (2007) New strain of influenza A virus (H5N1), Thailand. Emerging Infectious Diseases 13: 506-507.CrossRefGoogle ScholarPubMed
EPSTEIN, S.L., KONG, W.P., MISPLON, J.A., LO, C.Y., TUMPEY, T.M., XU, L. and NABLE, G.J. (2005) Protection against multiple influenza A subtypes by vaccination with highly conserved nucleoprotein. Vaccine 23: 5404-5410.CrossRefGoogle ScholarPubMed
GARES, S.L., FISCHER, K.P., CONGLY, S.E., LACOSTE, S., ADDISON, W.R., TYRRELL, D.L. and GUTFREUND, K.S. (2006) Immunotargeting with CD154 (CD40 ligand) enhances DNA vaccine responses in ducks. Clinical Vaccine Immunology 13: 958-965.CrossRefGoogle ScholarPubMed
GIOIA, C., CASTILLETTI, C., TEMPESTILLI, M., PIACENTINI, P., BORDI, L., CHIAPPINI, R., AGRATI, C., SQUARCIONE, S., IPPOLITO, G., PURO, V., CAPOBIANCHI, M.M. and POCCIA, F. (2008) Cross-subtype Immunity against Avian Influenza in Persons Recently Vaccinated for Influenza. Emerging Infectious Diseases 14(1): 121-128.CrossRefGoogle ScholarPubMed
GREGORY, A.P. (2006) Vaccines against Avian Influenza - A Race against Time. New England Journal of Medicine 354: 1411-1413.Google Scholar
HAGHIGHAT-JAHROMI, M., ASASI, K., NILI, H. and DADRAS, H. (2007) Role of Infectious Bronchitis Live Vaccine on Pathogenicity of H9N2 Avian Influenza Virus. International Journal of Poultry Science 6(11): 838-841.Google Scholar
HSIEH, M.K., WU, C.C. and LIN, T.L. (2007) Priming with DNA vaccine and boosting with killed vaccine conferring protection of chickens against infectious bursal disease. Vaccine 25(29): 5417-27.CrossRefGoogle ScholarPubMed
KANG, W., PANG, W., HAO, J. and ZHAO, D. (2006) Isolation of avian influenza virus (H9N2) from emu in China. Irish Veterinary Journal 59(3): 148-152.CrossRefGoogle Scholar
KONG, W., HOOD, C., YANG, Z., WEI, C.J., XU, L., GARCÍA-SASTRE, A., TERRENCE, M.T. and GARY, J.N. (2006) Protective immunity to lethal challenge of the 1918 pandemic influenza virus by vaccination. Proceedings of National Academy of Sciences USA 103: 15987-15991.CrossRefGoogle ScholarPubMed
KREIJTZ, J.H., BODEWES, R., VAN AMERONGEN, G., KUIKEN, T., FOUCHIER, R.A., OSTERHAUS, A.D. and RIMMELZWAAN, G.F. (2007) Primary influenza A virus infection induces cross-protective immunity against a lethal infection with a heterosubtypic virus strain in mice. Vaccine 25: 612-620.CrossRefGoogle ScholarPubMed
LEE, C.W., LEE, Y.J., SWAYNE, D., SENNE, D., LINARES, D.J. and SUAREZ, D. (2007) Assessing potential pathogenicity of avian influenza virus: current and experimental system. Avian Diseases 51: 260-3.CrossRefGoogle ScholarPubMed
LIEW, F.Y., RUSSELL, S.M., APPLEYARD, G., BRAND, C.M. and BEALE, J. (1984) Cross-protection in mice infected with influenza A virus by the respiratory route is correlated with local IgA antibody rather than serum antibody or cytotoxic T cell reactivity. European Journal of Immunology 14: 350-356CrossRefGoogle ScholarPubMed
LUCKAY, A., SIDHU, M.K., KJEKEN, R., MEGATI, S., CHONG, S.Y., ROOPCHAND, V., GARCIA-HAND, D., ABDULLAH, R., BRAUN, R., MONTEFIORI, D.C., ROSATI, M., FELBER, B.K., PAVLAKIS, G.N., MATHIESEN, I., ISRAEL, Z.R., ELDRIDGE, J.H. and EGAN, M.A. (2007) Effect of plasmid DNA vaccine design and in vivo electroporation on the resulting vaccine-specific immune responses in rhesus macaques. Journal of Virology 81: 5257-5269.CrossRefGoogle ScholarPubMed
MEHRABANPOUR, M.J., DADRAS, H., KHODAKARAM-TAFTI, A., RAHIMIAN, A. and TOFFAN, A. (2007) Pathological Findings of Highly Pathogenic Avian Influenza Virus A/Duck/Vietnam/12/2005 (H5N1) in Turkeys. International Journal of Poultry Science 6(9): 679-683.CrossRefGoogle Scholar
MOHAMMAD, Q.A. and MAHMOUD, N.A. (2005) Sero-prevalence of avian influenza among broiler-breeder flocks in Jordan. Preventive Veterinary Medicine 70: 45-50.Google Scholar
NAKAYA, T., CROS, J., PARK, M.S., NAKAYA, Y., ZHENG, H., SAGRERA, A., VILLAR, E., GARCÍA-SASTRE, A. and PALESE, P. (2001) Recombinant Newcastle Disease Virus as a Vaccine Vector. Journal of Virology 75: 23.CrossRefGoogle ScholarPubMed
NAYAK, B., ROUT, S.N., KUMAR, S., KHALIL, M.S., FOUDA, M.M., AHMED, L.E., EARHART, K.C., PEREZ, D.R., COLLINS, P.L. and SAMAL, S.K. (2009) Immunization of Chickens with Newcastle Disease Virus Expressing H5 Hemagglutinin Protects against Highly Pathogenic H5N1 Avian Influenza Viruses. PLoS One 4(8): e6509CrossRefGoogle Scholar
NICHOLSON, K.G., WOOD, J.M. and ZAMBON, M. (2003) Influenza. Lancet 362: 1733-1745.CrossRefGoogle ScholarPubMed
OSTERHAUS A., , FOUCHIER, R. and RIMMELZWAAN, G. (2011) Towards universal influenza vaccines? Phil. Trans. R. Soc. B 366(1579): 2766-2773CrossRefGoogle ScholarPubMed
PAN, Z., ZHANG, X., GENG, S., FANG, Q., YOU, M., ZHANG, L., JIAO, X. and LIU, X. (2010) Prime-Boost Immunization Using a DNA Vaccine Delivered by Attenuated Salmonella enterica Serovar Typhimurium and a Killed Vaccine Completely Protects Chickens from H5N1 Highly Pathogenic Avian Influenza Virus. Clinical Vaccine Immunology 17(4): 518-523.CrossRefGoogle Scholar
RAO, S.S., STYLES, D., KONG, W., ANDREWS, C. and GORRES J.P., NABEL G.J. (2009) . A gene-based avian influenza vaccine in poultry. Poultry Science 88: 860-866.CrossRefGoogle ScholarPubMed
RAO, S.S., KONG, W.P., WEI, C.J., VAN HOEVEN, N., GORRES, J.P., NASON, M., ANDERSEN, H., TERRENCE, M. and NABEL, G.J. (2010) Comparative Efficacy of Hemagglutinin, Nucleoprotein, and Matrix 2 Protein Gene-Based Vaccination against H5N1 Influenza in Mouse and Ferret. PLoS ONE 5(3): e9812.CrossRefGoogle ScholarPubMed
SANDBULTE, M.R., JIMENEZ, G.S., BOON, A.C., SMITH, L.R., TREANOR, J.J. and WEBBY, R.J. (2007) Cross-Reactive Neuraminidase Antibodies Afford Partial Protection against H5N1 in Mice and Are Present in Unexposed Humans. PLoS Med 4(2): e59.CrossRefGoogle ScholarPubMed
SHAH, M.A.A., YAN, R., XU, L., SONG, X. and LI, X. (2010) A recombinant DNA vaccine encoding Eimeria acervulina cSZ-2 induces immunity against experimental E. tenella infection. Veterinary Parasitology 169:185-189.CrossRefGoogle ScholarPubMed
SKEHEL, J.J. and WILEY, D.C. (2000) Receptor binding and membrane fusion in virus entry: The influenza hemagglutinin. Annual Reviews in Biochemistry 69: 531-569.CrossRefGoogle ScholarPubMed
SPACKMAN, E. (2008) A brief Introduction to the avian influenza virus. Methods in Molecular Biology 436: 1-6.Google ScholarPubMed
SRINIVAS, S.R., KONG, W., WEI, C.J., HOEVEN, N.V., GORRES, J.P., NASON, M., ANDERSEN, H., TUMPEY, T.M. and NABEL, G. (2010) Comparative efficacy of hemagglutinin, nucleoprotein, and matrix 2 protein gene-based vaccination against H5N1 influenza in mouse and ferret. PloS one 5(3): e9812.Google Scholar
STEEL, J., ANICE, C., LOWEN, , TAIA, T., WANG., , YONDOLA, M., GAO, Q., HAYE, K., GARCÍA-SASTRE, A. and PALESE, P. (2010) Influenza Virus Vaccine Based on the Conserved Hemagglutinin Stalk Domain. mBio 1:1e00018-10. doi: 10.1128/mBio.00018-1018.CrossRefGoogle Scholar
SUBBARAO, K., MURPHY, B.R. and ANTHONY, S.F. (2006) Development of Effective Vaccines against Pandemic Influenza. Immunity 24: 5-9.CrossRefGoogle Scholar
SUBBARAO, K. and JOSEPH, T. (2007) Scientific barriers to developing vaccines against avian influenza viruses. Nature Reviews Immunology 7: 267-278.CrossRefGoogle ScholarPubMed
TAKAHASHI, Y. (2007) Memory B cells in systemic and mucosal immune response: implications for successful vaccination. Biosciences Biotechnology Biochemistry 71: 2358-2366.CrossRefGoogle Scholar
TANG, L.H., PAN, Z.M., CHENG, N.N., JIAO, X.A. and ZHANG, X.M. (2007) Construction and immunogenicity of attenuated Salmonella typhimurium harbouring stable DNA vaccine against H5 subtype of avian influenza virus. Wei Sheng Wu Xue Bao 47(4): 662-6.Google Scholar
ULLAH, S., RIAZ, N. and SHAH, M.A.A. (2012) Recent advances in development of DNA vaccines against Hepatitis C virus. Indian Journal of Virology. DOI 10.1007/s13337-012-0058-3.CrossRefGoogle Scholar
WANG, R., SONG, A., LEVIN, J., DENNIS, D., ZHANG, N.J., YOSHIDA, H., KORIAZOVA, L., MADURA, L., SHAPIRO, L., MATSUMOTO, A., YOSHIDA, H., MIKAYAMA, T., KUBO, R.T., SARAWAR, S., CHEROUTRE, H. and KATO, S. (2008) Therapeutic potential of a fully human monoclonal antibody against influenza A virus M2 protein. Antiviral Research 80(2): 168-77.CrossRefGoogle Scholar
WHO, (2009) Cumulative Number of Confirmed Human Cases of Avian Influenza A/ (H5N1) Reported to WHO. http://www.who.int/csr/disease/avian_influenza/country/cases_table_2009_02_09/en/index.html.Google Scholar
YANG, Z.Y., KONG, W.P., HUANG, Y., ROBERTS, A., MURPHY, B., SUBBARAO, K. and NABEL, G.J. (2004) A DNA vaccine induces SARS coronavirus neutralization and protective immunity in mice. Nature 428: 561-564.CrossRefGoogle ScholarPubMed
ZHAO, G., LIN, Y., DU, L., GUAN, J., SUN, S., SUI, H., KOU, Z., CHAN, C.C., GUO, Y., JIANG, S., ZHENG, B.J. and ZHOU, Y. (2010) An M2e-based multiple antigenic peptide vaccine protects mice from lethal challenge with divergent H5N1 influenza viruses. Virology Journal 18: 9.CrossRefGoogle Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

DNA Vaccines against Avian Influenza: current research and future prospects
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

DNA Vaccines against Avian Influenza: current research and future prospects
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

DNA Vaccines against Avian Influenza: current research and future prospects
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *