Skip to main content Accessibility help
Hostname: page-component-684899dbb8-rbzxz Total loading time: 0.648 Render date: 2022-05-25T16:50:06.923Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true }

First century of chicken gene study and mapping – a look back and forward

Published online by Cambridge University Press:  18 September 2007

M.N. Romanov*
Department of Microbiology and Molecular Genetics, 2209 Biomedical Physical Sciences, Michigan State University, East Lansing, MI 48824–4320, USA
A.A. Sazanov
All-Russian Institute of Animal Genetics and Breeding, Russian Academy of Agricultural Science, Moskovskoye shosse 55A, St Petersburg – Pushkin 189620, Russia Biological Research Institute, St Petersburg State University, Oranienbaumskoye shosse 2, St Petersburg – Stary Petergof 198504, Russia
A.F. Smirnov
All-Russian Institute of Animal Genetics and Breeding, Russian Academy of Agricultural Science, Moskovskoye shosse 55A, St Petersburg – Pushkin 189620, Russia Biological Research Institute, St Petersburg State University, Oranienbaumskoye shosse 2, St Petersburg – Stary Petergof 198504, Russia
*Corresponding author: e-mail:
Get access


Chicken gene inheritance analysis, started one century ago, had led to the development of the classical genetic map. Efforts and legacy of the previous geneticists' generations are not forgotten and constitute the fundamentals of contemporary genome research progress. Advances in molecular biology, cytogenetics and DNA technologies provided more powerful and sophisticated tools to tackle chicken gene mapping and genome research problems. In the 1990s configurations of chicken molecular and cytogenetic maps had begun standing out. New horizons in chicken genomics are opening with application of BAC libraries, BAC-contig physical maps, ESTs and whole genome sequencing. The chicken has been a notable experimental model for several fundamental and applied biologic disciplines in the last century, and will remain such in the 21st century. The upcoming complete genome sequencing combined with discovering gene functions will facilitate the improvement of traits of economic importance and value in poultry.

Copyright © Cambridge University Press 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Ambady, S., Cheng, H.H. and Ponce de Leon, F.A. (2002) Development and mapping of microsatellite markers derived from chicken chromosome-specific libraries. Poultry Science 81: 16441646.CrossRefGoogle ScholarPubMed
Andreozzi, L., Federico, C., Motta, S., Saccone, S., Sazanova, A.L., Sazanov, A.A., Smirnov, A.F., Galkina, S.A., Lukina, N.A., Rodionov, A.V., Carels, N. and Bernardi, G. (2001) Compositional mapping of chicken chromosomes and identification of the gene-richest regions. Chromosome Research 9: 521532.CrossRefGoogle ScholarPubMed
Baratti, M., Alberti, A., Groenen, M., Veenendaal, T. and Fulgheri, E.D. (2001) Polymorphic microsatellites developed by cross-species amplifications in common pheasant breeds. Animal Genetics 32: 222225.CrossRefGoogle ScholarPubMed
Bateson, W. (1909) Mendel's Principles of Herediry. Cambridge University Press, Cambridge, UK.CrossRefGoogle Scholar
Bateson, W. and Punnett, R.C. (1911) The inheritance of peculiar pigmentation of the Silky fowl. Journal of Genetics 1: 185203.CrossRefGoogle Scholar
Bateson, W. and Saunders, E.R. (1902) Experimental studies in the physiology of heredity. Reporrs to the Evolution committee of the Royal Society 1: 1160.Google Scholar
Bennett, M.D., Leitch, I.J., Price, H.J. and Johnston, J.S. (2003) Comparisons with Caenorhabditis (˜100 Mb) and Drosophila (˜175 Mb) using flow cytometry show genome size in Arabidopsis to be ˜157 Mb and thus ˜25% larger than the Arabidopsis genome initiative estimate of ˜125 Mb. Annals of Botany 91: 547557.CrossRefGoogle Scholar
Bitgood, J.J. and Shoffner, R.N. (1990) Cytology and cytogenetics. In: Poultry Breeding and Genetics (Ed. Crawford, R.D.), Elsevier Science Publishers B.V., Amsterdam, The Netherlands, pp. 401427.Google Scholar
Bitgood, J.J. and Somes, R.G. Jr. (1990) Linkage relationships and gene mapping. In: Poultry Breeding and Genetics (Ed. Crawford, R.D.), Elsevier Science Publishers B.V., Amsterdam, The Netherlands, pp. 469495.Google Scholar
Bitgood, J.J. and Somes, R.G. Jr. (1993) Gene map of the chicken (Gallus gallus or G. domesticus). In: Generic Maps (Ed. O'Brien, S.), 6th edn, Cold Spring Harbor Laboratory Press, , Cold Spring Harbor, NY, USA, pp. 43324342.Google Scholar
Bloom, S.E., Delany, M.E. and Muscarella, D.E. (1993) Constant and variable features of avian chromosomes. In: Manipulation of the Avian Genome (Eds. Etches, R.J. and Verrinder Gibbins, A.M.), CRC Press, Boca Raton, FL, USA, pp. 3959.Google Scholar
Brown, W.R., Hubbard, S.J., Tickle, C. and Wilson, S.A. (2003) The chicken as a model for large-scale analysis of vertebrate gene function. Nature Review Genetics 4: 8798.CrossRefGoogle ScholarPubMed
Boardman, P.E., Sanz-Ezquerro, J., Overton, I.M., Burt, D.W., Bosch, E., FONG, W.T., Tickle, C., Brown, W.R., Wilson, S.A. and Hubbard, S.J. (2002) A comprehensive collection of chicken cDNAs. Current Biology 12: 19651969.CrossRefGoogle ScholarPubMed
Buitkamp, J., Ewald, D., Schalkwyk, L., Weiher, M., Masabanda, J., Sazanov, A., Lehrach, H. and Fries, R. (1998) Construction and characterisation of a gridded chicken cosmid library with four-fold genomic coverage. Animal Genetics 29: 295301.CrossRefGoogle ScholarPubMed
Bumstead, N. and Palyga, J. (1992) A preliminary linkage map of the chicken genome. Genomics 13: 690697.CrossRefGoogle ScholarPubMed
Burt, D.W. (2002) Origin and evolution of avian microchromosomes. Cytogenetic and Genome Research 96: 97112.CrossRefGoogle ScholarPubMed
Burt, D.W. and Pourquié, O. (2003) Chicken genome-science nuggets to come soon. Science 300: 1669.CrossRefGoogle ScholarPubMed
Burt, D.W., Bruley, C., Dunn, I.C., Jones, C.T., Ramage, A., Law, A.S., Morrice, D.R., Paton, I.R., Smith, J., Windsor, D., Sazanov, A., Fries, R. and Waddington, D. (1999) The dynamics of chromosome evolution in birds and mammals. Nature 402: 411413.CrossRefGoogle ScholarPubMed
Burt, D.W., Morrice, D.R., Sewalem, A., Smith, J., Paton, I.R., Smith, E.J., Bentley, J. and Hocking, P.M. (2003) Preliminary linkage map of the Turkey (Meleagris gallopavo) based on microsatellite markers. Animal Genetics 34: 399409.CrossRefGoogle ScholarPubMed
Cohen, D., Chumakov, I. and Weissenbach, J. (1993) A first-generation physical map of the human genome. Nature 366: 698701.CrossRefGoogle ScholarPubMed
Collins, F.S., Patrinos, A., Jordan, E., Chakravarti, A., Gesteland, R., Walters, L. and the members of the DOE and NIH planning groups (1998) New goals for the U.S. human genome project: 1998–2003. Science 282: 682689.CrossRefGoogle ScholarPubMed
Crittenden, L.B., Provencher, L., Santangelo, L., Levin, I., Abplanalp, H., Briles, R.W., Briles, W.E. and Dodgson, J.B. (1993) Characterisation of a Red Jungle Fowl by White Leghorn backcross reference population for molecular mapping of the chicken genome. Poultry Science 72: 334348.CrossRefGoogle Scholar
Crooijmans, R.P.M.A., Vrebalov, J., Dijkhof, R.J.M., Van Der Poel, J.J. and Groenen, M.A.M. (2000) Two-dimensional screening of the Wageningen chicken BAC library. Mammalian Genome 11: 360363.CrossRefGoogle ScholarPubMed
Davenport, C.B. (1911) Another case of sex-limited heredity in poultry. Proceedings of the Sociery for Experimental Biology and Medicine 9: 1920.CrossRefGoogle Scholar
Davenport, C.B. (1912) Sex-limited inheritance in poultry. Journal of Experimental Zoology 13: 126.CrossRefGoogle Scholar
Dranchak, P.K., Chaves, L.D., Rowe, J.A. and Reed, K.M. (2003) Turkey microsatellite loci from an embryonic cDNA library. Poultry Science 82: 526531.CrossRefGoogle ScholarPubMed
Dunn, I.C., Sharp, P.J., Paton, I.R. and Burt, D.W. (1999) Mapping of the gene responsible for henny feathering (CYPI 9/aromatase) to chicken chromosome E29C09W09. Proceedings of the Poultry Genetics SymposiumMariensee, Germany, p. 114.Google Scholar
Dunn, L.C. (1928) The genetics of the domestic fowl. Journal of Heredity 19: 511519.CrossRefGoogle Scholar
Dunn, L.C. (1929) The genetics of the domestic fowl: Memoirs of the Anikowo Genetical Station, 1926.II. The genetics of leg feathering. Journal of Heredity 20: 111118.CrossRefGoogle Scholar
Dunn, L.C. and Jull, M.A. (1927) On the inheritance of some characteristics of the Silky fowl. Journal of Genetics 19: 2763.CrossRefGoogle Scholar
Dunn, L.C. and Landauer, W. (1930) Further data on a case of autosomal linkage in the domestic fowl. Journal of Genetics 22: 95101.CrossRefGoogle Scholar
Durham, F.M. and Marryat, D.C.E. (1908) Note on the inheritance of sex in canaries. Reports to the Evolution Committee of the Royal Society IV: 5760.Google Scholar
Etches, R.J. and Haws, R.O. (1973) A summary of linkage relationships and a revised linkage map of the chicken. Canadian Journal of Genetics and Cytology 15: 553570.CrossRefGoogle Scholar
Fillon, V., Morisson, M., Zoorob, R., Auffray, C., Douaire, M., Gellin, J. and Vignal, A. (1998) Identification of 16 chicken microchromosomes by molecular markers using two-colour fluorescence in situ hybridisation (FISH). Chromosome Research 6: 307313.CrossRefGoogle Scholar
Goodale, H.D. (1909) Sex and its relation to the barring factor in poultry. Science 29: 10041005.CrossRefGoogle ScholarPubMed
Goodale, H.D. (1910) Breeding experiments in poultry. Proceedings of the Society for Experimental Biology and medicine 7: 178179CrossRefGoogle Scholar
Goodale, H.D. (1911) Sex-limited inheritance and sexual dimorphism in poultry. Science 33: 939940.CrossRefGoogle ScholarPubMed
Goodale, H.D. (1917) Crossing-over in the sex chromosome of the male fowl. Science 46: 213.CrossRefGoogle ScholarPubMed
Groenen, M.A.M., Crooijmans, R.P.M.A., Veenendall, A., Van Kaam, J.B.C.H.M., Vereijken, A.L.J., Van Arendonk, J.A.M. and Van Der Poel, J.J. (1997) QTL. mapping in chicken using a three generation full sib family structure of an extreme broiler x broiler cross. Animal Biotechnology 8: 4146.CrossRefGoogle Scholar
Groenen, M.A.M., Crooijmans, R.P.M.A., Veenendaal, A., Cheng, H.H., Siwek, M. and Van Der Poel, J.J. (1998) A comprehensive microsatellite linkage map of the chicken genome. Genomics 49: 265274.CrossRefGoogle ScholarPubMed
Groenen, M.A.M., Cheng, H.H., Bumstead, N., Benkel, B.F., Briles, W.E., Burke, T., Burt, D.W., Crittenden, L.B., Dodgson, J., Hillel, J., Lamont, S., Ponce de Leon, A., Soller, M., Takahashi, H. and Vignal, A. (2000) A consensus linkage map of the chicken genome. Genome Research 10: 137–47.Google ScholarPubMed
Guillier-Gensik, Z., Bernheim, A. and Coullin, P. (1999) Generation of whole-chromosome painting probes specific to each chicken macrochromosomes. Cytogenetics and Cell Genetics 87: 282285.CrossRefGoogle Scholar
Habermann, F., Cremer, M., Walter, J., Kreth, G., Von Hase, J., Bauer, K., Wienberg, J., Cremer, C., Cremer, T. and Solovei, I. (2001) Arrangement of macro– and microchromosomes in chicken cells. Chromosome Research 9: 569584.CrossRefGoogle ScholarPubMed
Hadley, P.B. (1910) Sex-limited inheritance. Science 32: 797.CrossRefGoogle ScholarPubMed
Hagedoorn, A.L. (1909) Mendelian inheritance of sex. Archiv für Entwicklungsmechanik der Organismen 28: 134.CrossRefGoogle Scholar
Haldane, J.B.S. (1921) Linkage in poultry. Science 54: 663.CrossRefGoogle ScholarPubMed
Harry, D.E., Marini, P.J., Zaitlin, D. and Reed, K.M. (2003) A first generation map of the turkey genome. Genome 46: 914924.CrossRefGoogle ScholarPubMed
Hertwig, P. (1933) Geschlechtsgebundene und autosomale Koppelungen bei Hühnern. Verhandlungen der Deutschen Zoologischen Gesellschaft E.V. 35: 112118.Google Scholar
Huang, H.B., Song, Y.Q., Hsei, M., Zahorchak, R., Chiu, J., Teuscher, C. and Smith, E.J. (1999) Development and characterisation of genetic mapping resources for the turkey (Meleagris gallopavo). Journal of Heredity 90: 240242.CrossRefGoogle Scholar
Hudson, T.J., Stein, L.D., Gerety, S.S., Ma, J., Castle, A.B., Silva, J., Slonim, D.K., Baptista, R., Kruglyak, L., Xu, S.-H., Hu, X., Colbert, A.M.E., Rosenberg, C., Reeve-Daly, M.P., Rozen, S., Hui, L., Wu, X., Vestergaard, C., Wilson, K.M., Bae, J.S., Maitra, S., Ganiatsis, S., Evans, C.A., Deangelis, M.M., Ingalls, K.A., Nahf, R.W., Horton, L.T. Jr., Anderson, M.O., Collymore, A.J., Ye, W., Kouyoumjian, V., Zemsteva, I.S., Tam, J., Devine, R., Courtney, D.F., Renaud, M.T., Ngwen, H., O'Conner, T.J., Fizames, C., Fauré, S., Gyapay, C., Dib, C., Morissette, J., Orlin, J.B., Birren, B.W., Goodman, N., Weissenbach, J., Hawkins, T.L., Foote, S., Page, D.C. and Lander, E.S. (1995) An STS-based map of the human genome. Science 270: 19451954.CrossRefGoogle ScholarPubMed
Hutt, F.B. (1933) Genetics of the fowl. II. A four-gene autosomal linkage group. Genetics 18: 8294.Google Scholar
Hutt, F.B. (1936) Genetics of the fowl. VI. A tentative chromosome map. In: Neue Forschungen in Tierzucht und Abstammungslehre (Duersr Festschrift), pp. 105112.Google Scholar
Hutt, F.B. (1949) Genetics of the Fowl. McGraw-Hill Book Company, Inc., New York, NY, USA.Google Scholar
Hutt, F.B. (1960) New loci in the sex chromosome of the fowl. Heredity 15: 97110.CrossRefGoogle Scholar
Hutt, F.B. (1964) Animal Genetics. Ronald Press Company, New York, NY, USA.Google Scholar
Hutt, F.B. and Lamoreux, W.F. (1940) Genetics of the fowl. II. A linkage map for six chromosomes. Journal of Heredity 31: 231235.CrossRefGoogle Scholar
Ikeobi, C.O., Woolliams, J.A., Morrice, D.R., Law, A., Windsor, D., Burt, D.W. and Hocking, P.M. (2002) Quantitative trait loci affecting fatness in the chicken. Animal Genetics 33: 428435.CrossRefGoogle ScholarPubMed
Itoh, Y. and Mizuno, S. (2002) Molecular and cytological characterisation of Sspl– family repetitive sequence on the chicken W chromosome. Chromosome Research 10: 499511.CrossRefGoogle Scholar
Jull, M.A. (1930) The association of comb and crest characters in the domestic fowl. Journal of Heridity 21: 2128.CrossRefGoogle Scholar
Kadi, F., Mouchiroud, D., Sabeur, G. and Bernardi, G. (1993) The compositional patterns of the avian genomes and their evolutionary implications. Journal of Molecular Evolution 37: 544551.CrossRefGoogle Scholar
Kato, J., Hattori, T., Ohba, S., Tamaki, Y., Yamada, N., Taguchi, T., Ogihara, J., Ohya, K., Itoh, Y., Hori, T., Asakawa, S., Shimizu, N. and Mizuno, S. (2002) Efficient selection of genomic clones from a female chicken bacterial artificial chromosome library by four-dimensional polymerase chain reactions. Poultry Science 81: 15011508.CrossRefGoogle ScholarPubMed
Kayang, B.B., Inoue-Murayama, M., Hoshi, T., Matsuo, K., Takahashi, H., Minezawa, M., Mizutani, M. and Ito, S. (2002) Microsatellite loci in Japanese quail and cross-species amplification in chicken and guinea fowl. Genetics Selection Evolution 34: 233253.CrossRefGoogle ScholarPubMed
Kerje, S., Lind, J., Schütz, K., Jensen, P. and Andersson, L. (2003) Melanocortin I-receptor (MCIR) mutations are associated with plumage colour in chicken. Animal Genetics 34: 264274.CrossRefGoogle Scholar
Landauer, W. (1931) The linkage relationships of the autosomal genes for Creeper and Rose comb in the fowl. Anatomical Record 51: 123.Google Scholar
Lee, E.J., Yoshizawa, K., Mannen, H., Kikuchi, H., Kikuchi, T., Mizutani, M. and Tsuji, S. (2002) Localisation of the muscular dystrophy AM locus using a chicken linkage map constructed with the Kobe University resource family. Animal Genetics 33: 4248.CrossRefGoogle Scholar
Lee, M.-K., Ren, C.W., Yan, B., Cox, B., Zhang, H.-B., Romanov, M.N., Sizemore, F.G., Suchyta, S.P., Peters, E. and Dodgson, J.B. (2003) Construction and characterisation of three complementary BAC libraries for analysis of the chicken genome. Animal Genetics 34: 151152.CrossRefGoogle Scholar
Levin, I., Cheng, H.H., Baxter-Jones, C. and Hillel, J. (1995) Turkey microsatellite DNA loci amplified by chicken specific primers. Animal Genetics 26: 107110.CrossRefGoogle Scholar
Lipkin, E., Fulton, J., Cheng, H, Yonash, N. and Soller, M. (2002) Quantitative trait locus mapping in chickens by selective DNA pooling with dinucleotide microsatellite markers by using purified DNA and fresh or frozen red blood cells as applied to marker-assisted selection. Poultry Science 81: 283292.CrossRefGoogle ScholarPubMed
Lock, R. H. (1906) Recent Progress in the Study of Variation, Heredity, and Evolution. E.P. Dutton & Co., New York, NY, USA.Google Scholar
Maak, S., Wimmers, K., Weigend, S. and Neumann, K. (2003) Isolation and characterisation of 18 microsatellites in the Peking duck (Anas platyrhynchos) and their application in other waterfowl species. Molecular Ecology Notes 3: 224227.CrossRefGoogle Scholar
Michelmore, R.W., Paran, I. and Kesseli, R.V. (1991) Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proceedings of the National Academy of Sciences of the United States of America 88: 98289832.CrossRefGoogle ScholarPubMed
Mizuno, S. and Macgregor, H. (1998) The ZW lampbrush chromosomes of birds: a unique opportunity to look at the molecular cytogenetics of sex chromosomes. CytoGenetics and Cell Genetics 80: 149157.CrossRefGoogle Scholar
Moiseyeva, I., Romanov, M. and Pigaryev, N. (2000) Obituary: Sergey Petrov. World's Poultry, Science Journal 56: 437438.Google Scholar
Morgan, T. H. (1910) The method of inheritance of two sex-limited characters in the same animal. Proceedings of the Society for Experimental Biology and Medicine 8: 1719.CrossRefGoogle Scholar
Morgan, T. H. (1911) An attempt to analyze the constitution of the chromosomes on the basis of sex-limited inheritance in Drosophila. Journal of Experimental Zoology 11: 365412.CrossRefGoogle Scholar
Morgan, T. H. and Goodale, H.D. (1912) Sex-linked inheritance in poultry. Annals of the New York Academy of Sciences 22: 113133.CrossRefGoogle Scholar
Morisson, M., Lemière, A., Bosc, S., Galan, M., Plisson-Petit, F., Pinton, P., Delcros, C., Fève, K., Pitel, F., Fillon, V., Yerle, M. and Vignal, A. (2002) ChickRH6 a chicken whole-genome radiation hybrid panel. Genetics Selection Evolution 34: 521533.CrossRefGoogle ScholarPubMed
Ohno, S. (1961) Sex chromosomes and microchromosomes of Gallus domesticus. Chromosoma 11: 484498.CrossRefGoogle Scholar
Okimoto, R., Stie, J.T., Takeuchi, S., Payne, W.S. and Salter, D.W. (1999) Mapping the melanocortin I-receptor (MCI-R) gene and association of MCI-R polymorphisms with E locus phenotypes. Poultry Science 78(Suppl.): 60.Google Scholar
Pang, S.W., Ritland, C., Carlson, J.E. and Cheng, K.M. (1999) Japanese quail microsatellite loci amplified with chicken-specific primers. Animal Genetics 30: 195199.CrossRefGoogle ScholarPubMed
Passarge, E., Horsthemke, B. and Farber, R.A. (1999) Incorrect use of the term synteny. Nature Genetics 23: 387.CrossRefGoogle ScholarPubMed
Pearl, R. (1912) Notes on the history of barred breeds of poultry. Biological Bulletin of the Marine Biological Laborarory 22: 297308.CrossRefGoogle Scholar
Pearl, R. and Surface, F.M. (1910a) On the inheritance of the barred color pattern in poultry. Archiv für Entwicklungsmechanik der Organismen 30: 4561.CrossRefGoogle Scholar
Pearl, R. and Surface, F.M. (1910b) Studies on hybrid poultry. XXVI Annual Report of the Maine Agricultural Experiment Station, pp. 84115.Google Scholar
Pearl, R. and Surface, F.M. (1910c) Further data regarding the sex-limited inheritance of the barred color pattern in poultry. Science 32: 870874.CrossRefGoogle ScholarPubMed
Petrov, S.G. (1931) Plan of the chromosomes of the domestic fowl. Zhurnal experimental'noy biologii 7: 7176.Google Scholar
Pimentel-Smith, G.E., Shi, L., Drummond, P., Tu, Z. and Smith, E.J. (2000) Amplification of sequence tagged sites in five avian species using heterologous oligonucleotides. Genetica 110: 219226.CrossRefGoogle ScholarPubMed
Pisenti, J.M., Delany, M.E., Taylor, R.L. Jr., Abbott, U.K., Abplanalp, H.,Arthur, J.A., Bakst, M.R., Baxter-Jones, C., Bitgood, J.J., Bradley, F., Cheng, K.M., Dietert, R.R., Dodgson, J.B., Donoghue, A., Emsley, A.E., Etches, R., Frahm, R.R., Gerrits, R.J., Goetinck, P.F., Grunder, A.A., Harry, D.E., Lamont, S.J., Martin, G.R., Mcguire, P.E., Moberg, G.P., Pierro, L.J., Qualset, C.O., Qureshi, M., Schultz, F. and Wilson, B.W. (1999) Avian genetic resources at risk: an assessment and proposal for conservation of genetic stocks in the USA and Canada. Report No. 20, University of California, Division of Agriculture and Natural Resources, Genetic Resources Conservation Program, Davis, CA, USA.Google Scholar
Pitel, F.,Berge, R., Coquerelle, G., Crooijmans, R.P.M.A., Groenen, M.A.M.,Vignal, A. and Tixier-Boichard, M. (2000) Mapping the Naked Neck (NA) and Folydactyly (PO) mutants of the chicken with microsatellite molecular markers. Genetics Selection Evolution 32: 7386.CrossRefGoogle Scholar
Punnett, R. C. and Bateson, W. (1908) The heredity of sex. Science 27: 785787.CrossRefGoogle Scholar
Reed, K.M., Mendoza, K.M. and Beattie, C.W. (2000) Comparative analysis of microsatellite loci in chicken and turkey. Genome 43: 796802.CrossRefGoogle ScholarPubMed
Reed, K.M., Chaves, L.D. and Rowe, J.A. (2002) Twelve new turkey microsatellite loci. Poultry Science 81: 17891791.CrossRefGoogle ScholarPubMed
Ren, C.W., Lee, M.-K., Yan, B.,Ding, K., Cox, B., Romanov, M.N., Price, J.A., Dodgson, J.B. and Zhang, H.-B. (2003) A BAC-based physical map of the chicken genome. Genome Research 13: 27542758.CrossRefGoogle ScholarPubMed
Rodionov, A.V. (1996) Micro versus macro: a review of structure and function of avian micro– and macrochromosomes. Genetika 32: 597608.Google Scholar
Rodionov, A.V., Lukina, N.A., Galkina, S.A., Solovei, I. and Saccone, S. (2002) Crossing over in chicken oogenesis: cytological and chiasma-based genetic maps of chicken lampbrush chromosome 1. Journal of Heredity 93: 125129.CrossRefGoogle ScholarPubMed
Romanov, M.N., Price, J.A. and Dodgson, J.B. (2003) Integration of animal linkage and BAC contig maps using overgo hybridization. Cytogenetic and Genome Research 102 (in print).CrossRefGoogle ScholarPubMed
Ruyter-Spira, C.P., Gu, Z.L., Van der Poel, J.J. and Groenen, M.A.M. (1997) Bulked segregant analysis using microsatellites: mapping of the dominant white locus in the chicken. Poultry Science 76: 386391.CrossRefGoogle ScholarPubMed
Ruyter-Spira, C.P., De Groof, A.J.C., Van der Poel, J.J., Herbergs, J., Masabanda, J., Fries, R. and Groenen, M.A.M. (1998) The HMGI-C gene is a likely candidate for the autosomal dwarf locus in the chicken. Journal of Heredity 89: 295300.CrossRefGoogle ScholarPubMed
Sazanov, A., Masabanda, J., Ewald, D., Takeuchi, S., Tixier-Boichard, M., Buitkamp, J. and Fries, R. (1998) Evolutionarily conserved telomeric location of BBCI and MCIR on a microchromosome questions the identity of MCIR and a pigmentation locus on chromosome 1 in chicken. Chromosome Research 6: 651654.CrossRefGoogle Scholar
Sazanov, A.A., Trukhina, A.V., Smirnov, A.F. and Jaszczak, K. (2002) Two chicken genes APOAI and ETSI are physically assigned to the same microchromosome. Animal Genetics 33: 321322.CrossRefGoogle Scholar
Schmid, M., Nanda, I., Guttenbach, M., Steinlein, C., Hoehn, M., Schartl, M., Haaf, T., Weigend, S., Fries, R., Buerstedde, J.-M., Wimmers, K., Burt, D.W., Smith, J., A'Hara, S., Law, A., Griffin, D.K., Bumstead, N., Kaufman, J., Thomson, P.A., Burke, T., Groenen, M.A.M., Crooijmans, R.P.M.A., Vignal, A., Fillon, V., Morisson, M., Pitel, F., Tixier-Boichard, M., Ladjali-Mohammedi, K., Hillel, J., Mäxi-Tanila, A., Cheng, H.H., Delany, M.E., Burnside, J. and Mizuno, S. (2000) First report on chicken genes and chromosomes 2000. CyroGenetics and Cell Genetics 90: 169218.CrossRefGoogle ScholarPubMed
Serebrovsky, A.S. (1922) Crossing-over involving three sex-linked genes in chickens. American Naturalist 56: 571572.CrossRefGoogle Scholar
Serebrovsky, A.S. (1926) Studies on genetics of domestic fowl. In: Genetics of the Domestic Fowl: Memoirs of Anikowo Genetical Starion near Moscow (Ed. Koltzoff, N.K.), Commissariat of Agriculture, Novaia Derevnia, Moscow, Russia, pp. 374. (Abstracted in: DUNN, 1928, 1929).Google Scholar
Serebrovsky, A.S. and Petrov, S.G. (1928) A case of close autosomal linkage in the fowl. Journal of Heredity 19: 306306.CrossRefGoogle Scholar
Serebrovsky, A.S. and Petrov, S.G. (1930) On the composition of the plan of the chromosomes of the domestic hen. Zhurnal experimental'noy biologii 6: 157180.Google Scholar
Serebrovsky, A.S. and Wassina, E.T. (1927) On the topography of the sex-chromosome in fowls. Journal of Genetics 17: 211216.CrossRefGoogle Scholar
Shibusawa, M., Nishida-Umehara, C., Masabanda, J., Griffin, D.K., Isobe, T. and Matsuda, Y. (2002) Chromosome rearrangements between chicken and guinea fowl defined by comparative chromosome painting and FISH mapping of DNA clones. Cyrogenetic and Genome Research 98: 225230.CrossRefGoogle ScholarPubMed
Smith, E.,Shi, L., Drummond, P., Rodriguez, L., Hamilton, R., Powell, E., Nahashon, S., Ramlal, S., Smith, G. and Foster, J. (2000) Development and characterisation of expressed sequence tags for the turkey (Meleagris gallopavo) genome and comparative sequence analysis with other birds. Animal Genetics 31: 6267.CrossRefGoogle Scholar
Smith, E.J., Shi, L., Drummond, P., Rodriguez, L., Hamilton, R., Ramlal, S., Smith, G., Pierce, K. and Foster, J. (2001a) Expressed sequence tags for the chicken genome from a normalized 10-day-old White Leghorn whole embryo cDNA library: I. DNA sequence characterisation and linkage analysis. Journal of Heredity 92: 18.CrossRefGoogle Scholar
Smith, E.J., Shi, L., Prevost, L., Drummond, P., Ramlal, S., Smith, G., Pierce, K. and Foster, J. (2001b) Expressed sequence tags for the chicken genome from a normalized, ten-day-old white leghorn whole embryo cDNA library. 2. Comparative DNA sequence analysis of guinea fowl, quail, and turkey genomes. Poultry Science 80: 12631272.CrossRefGoogle ScholarPubMed
Smith, J., Bruley, C.K., Paton, I.R., Dunn, I., Jones, C.T., Windsor, D., Morrice, D.R., Law, A.S., Masabanda, J., Sazanov, A., Waddington, D., Fries, R. and Burt, D.W. (2000) Differences in gene density on chicken macrochromosomes and microchromosomes. Animal Genetics 31: 96103.CrossRefGoogle ScholarPubMed
Somes, R.G. Jr. (1973) Linkage relationships in domestic fowl. Journal of Heredity 64: 217221.CrossRefGoogle ScholarPubMed
Somes, R.G. Jr. (1978) New linkage groups and revised chromosome map of the domestic fowl. Journal of Heredity 69: 401403.CrossRefGoogle Scholar
SomesR.G., JR. R.G., JR. (1987) Linked loci of the chicken – Gallus gallus (G. domesticus). In: Generic Maps (Ed. Obrien, S.), 4th edn, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA, pp. 422429.Google Scholar
Somes, R.G. Jr. (1992) Identifying the ptilopody (feathered shank) loci of the chicken. Journal of Heredity 83: 230234.CrossRefGoogle ScholarPubMed
Spillman, W.J. (1908) Spurious allelomorphism: results of some recent investigations. American Naturalist 42: 610615.CrossRefGoogle Scholar
Spillman, W.J. (1909) Barring in Barred Plymouth Rocks. Poultry 5: 7.Google Scholar
Stevens, L. (1986) Gene structure and organisation in the domestic fowl (Gallus domesticus). World Poultry Science Journal 42: 232242.CrossRefGoogle Scholar
Sturtevant, A.H. (1911) Another sex-limited character in fowls. Science 33: 337338.CrossRefGoogle ScholarPubMed
Sturtevant, A.H. (1912) An experiment dealing with sex-linkage in fowls. Journal of Experimental Zoology 12: 499518.CrossRefGoogle Scholar
Suchyta, S.P., Cheng, H.H., Burnside, J. and Dodgson, J.B. (2001) Comparative mapping of chicken anchor loci orthologous to genes on human chromosomes 1,4 and 9. Animal Genetics 32: 1218.CrossRefGoogle ScholarPubMed
Sungurov, A.N. (1933) On the plan of the fowl chromosomes. Biologicheskiy zhurnal 2: 196201.Google Scholar
Suttle, A.D. and Sipe, G.R. (1932) Linkage of genes for crest and frizzle. Journal of Heredity 23: 135142.CrossRefGoogle Scholar
Sutton, W.S. (1903) The chromosomes in heredity. Biological Bulletin 4: 231251.CrossRefGoogle Scholar
Suzuki, T., Kurosaki, T., Shimada, K., Kansaku, N., Kuhnlein, U., Zadworny, D., Agata, K., Hashimoto, A., Koide, M., Koike, M., Takata, M., Kuroiwa, A., Minai, S., Namikawa, T. and Matsuda, Y. (1999) Cytogenetic mapping of 31 functional genes on chicken chromosomes by direct R-banding FISH. Cytogenetics and Cell Genetics 87: 3240.CrossRefGoogle ScholarPubMed
Tatsuda, K. and Fujinaka, K. (2001) Genetic mapping of QTL affecting body weight in chickens using a F2 family. British Poultry Science 42: 333337.CrossRefGoogle ScholarPubMed
Toye, A.A., Schalkwyk, L., Lehrach, H. and Bumstead, N. (1997) A yeast artificial chromosome (YAC) library containing 10 haploid chicken genome equivalents. Mammalian Genome 8: 274276.CrossRefGoogle ScholarPubMed
Tuiskula-Haavisto, M., Honkatukia, M., Vikki, J., De Konig, D., Schulman, N. and Mäki-Tanila, A. (2002) Mapping of quantitative trait loci affecting quality and production traits in eggs layers. Poultry Science 81: 919927.CrossRefGoogle ScholarPubMed
Vallejo, R.L., Bacon, L.D., Liu, H.C., Witter, R.L., Groenen, M.A.M., Hillel, J. and Cheng, H.H. (1998) Genetic mapping of quantitative trait loci affecting susceptibility to Market's disease virus induced tumors in F2 intercross chickens. Genetics 148: 349360.Google Scholar
Van Kaam, J.B.C.H.M., Van Arendonk, J.A.M., Groenen, M.A.M., Bovenhuis, H., Vereijken, A.L.J., Crooijmans, R.P.M.A., Van Der Poel, J.J. and Veenendall, A. (1998) Whole genome scan in chickens for quantitative trait loci affecting body weight in chickens using a three generation design. Livestock Production Science 54: 133150.CrossRefGoogle Scholar
Van Kaam, J.B.C.H.M., Groenen, M.A.M., Bovenhuis, H., Veenendaal, A., Verewken, A.L.J. and Van Arendonk, J.A.M. (1999a) Whole genome scan in chickens for quantitative trait loci affecting growth and feed efficiency. Poultry Science 78: 1523.CrossRefGoogle ScholarPubMed
Van Kaam, J.B.C.H.M., Groenen, M.A.M., Bovenhuis, H., Veenendaal, A., Vereijken, A.L.J. and Van Arendonk, J.A.M. (1999b) Whole genome scan in chickens for quantitative trait loci affecting carcass traits. Poultry Science 78: 10911099.CrossRefGoogle ScholarPubMed
Waddington, D., Springbett, A.J. and Burt, D.W. (2000) A chromosome-based model for estimating the number of conserved segments between pairs of species from comparative genetic maps. Genetics 154: 323332.Google ScholarPubMed
Wardecka, B., Olszewski, R., Jaszczak, K., Zieba, C., Pierzchala, M. and Wicinska, K. (2002) Relationship between microsatellite marker alleles on chromosome 1–5 originating from the Rhode Island Red and Green-legged Partrigenous breeds and egg production and quality traits in F2 mapping population. Journal of Applied Genetics 43: 319329.Google Scholar
Warren, D.C. (1928) Sex-linked characters of poultry. Genetics 13: 421433.Google ScholarPubMed
Warren, D.C. (1935) A new linkage group in the fowl (Gallus domesticus). American Naturalist 69: 82.Google Scholar
Warren, D.C. (1949) Linkage relations of autosomal factors in the fowl. Genetics 34: 333350.Google ScholarPubMed
Warren, D.C. and Hutt, F.B. (1936) Linkage relations of crest, dominant white and frizzling in the fowl. American Naturalist 70: 379394.CrossRefGoogle Scholar
Xu, G. and Goodridge, A.G. (1998) A CT repeat in the promoter of the chicken malic enzyme gene is essential for function at an alternative transcription start site. Archives of Biochemistry and Biophysics 358: 8391.CrossRefGoogle ScholarPubMed
Yamashina, Y. (1944) Karyotype studies in birds. I. Comparative morphology of chromosomes in seventeen races of domestic fowl. Cyrologia 13: 270296.Google Scholar
Yonash, N., Bacon, L.D., Witter, R.L. and Cheng, H.H. (1999) High resolution mapping and identification of new quantitative trait loci (QTL) affecting susceptibility to Marek's disease. Animal Genetics 30: 126135.CrossRefGoogle ScholarPubMed
Zimmer, R. and Verrinder Gibbins, A.M. (1997) Construction and characterisation of a large-fragment chicken bacterial artificial chromosome library. Genomics 42: 217226.CrossRefGoogle Scholar
Zimmer, R., King, W.A. and Verrinder Gibbins, A.M. (1997) Generation of chicken Z-chromosome painting probes by microdissection for screening large-insert genomic libraries. CyroGenetics and Cell Genetics 78: 124130.CrossRefGoogle ScholarPubMed

Save article to Kindle

To save this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the or variations. ‘’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

First century of chicken gene study and mapping – a look back and forward
Available formats

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

First century of chicken gene study and mapping – a look back and forward
Available formats

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

First century of chicken gene study and mapping – a look back and forward
Available formats

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *