Skip to main content
    • Aa
    • Aa

Comparative and phylogenetic perspectives of the cleavage process in tailed amphibians

  • Alexey G. Desnitskiy (a1) and Spartak N. Litvinchuk (a2)

The order Caudata includes about 660 species and displays a variety of important developmental traits such as cleavage pattern and egg size. However, the cleavage process of tailed amphibians has never been analyzed within a phylogenetic framework. We use published data on the embryos of 36 species concerning the character of the third cleavage furrow (latitudinal, longitudinal or variable) and the magnitude of synchronous cleavage period (up to 3–4 synchronous cell divisions in the animal hemisphere or a considerably longer series of synchronous divisions followed by midblastula transition). Several species from basal caudate families Cryptobranchidae (Andrias davidianus and Cryptobranchus alleganiensis) and Hynobiidae (Onychodactylus japonicus) as well as several representatives from derived families Plethodontidae (Desmognathus fuscus and Ensatina eschscholtzii) and Proteidae (Necturus maculosus) are characterized by longitudinal furrows of the third cleavage and the loss of synchrony as early as the 8-cell stage. By contrast, many representatives of derived families Ambystomatidae and Salamandridae have latitudinal furrows of the third cleavage and extensive period of synchronous divisions. Our analysis of these ontogenetic characters mapped onto a phylogenetic tree shows that the cleavage pattern of large, yolky eggs with short series of synchronous divisions is an ancestral trait for the tailed amphibians, while the data on the orientation of third cleavage furrows seem to be ambiguous with respect to phylogeny. Nevertheless, the midblastula transition, which is characteristic of the model species Ambystoma mexicanum (Caudata) and Xenopus laevis (Anura), might have evolved convergently in these two amphibian orders.

Corresponding author
All correspondence to: Alexey G. Desnitskiy. Department of Embryology, St. Petersburg State University, Universitetskaya nab. 7/9, 199034, St. Petersburg, Russia. Tel: +7812 3289453. e-mail:
Hide All
P.L. Anderson (1943). The normal development of Triturus pyrrhogaster. Anat. Rec. 86, 5973.

B.D. Bell & R.J. Wassersug (2003). Anatomical features of Leiopelma embryos and larvae: implications for anuran evolution. J. Morphol. 256, 160–70.

H. Brinkmann , A. Denk , J. Zitzler , J.J. Joss & A. Meyer (2004a). Complete mitochondrial genome sequences of the South American and the Australian lungfish: testing of the phylogenetic performance of mitochondrial data sets for phylogenetic problems in tetrapod relationships. J. Mol. Evol. 59, 834–48.

H. Brinkmann , B. Venkatesh , S. Brenner & A. Meyer (2004b). Nuclear protein-coding genes support lungfish and not the coelacanth as the closest living relatives of land vertebrates. Proc. Natl Acad. Sci. USA 101, 4900–5.

H.A. Brown (1989). Developmental anatomy of the tailed frog (Ascaphus truei): a primitive frog with large eggs and slow development. J. Zool. 217, 525–37.

E.M. Callery (2006). There's more than one frog in the pond: a survey of the Amphibia and their contributions to developmental biology. Sem. Cell Dev. Biol. 17, 8092.

P.T. Chippindale , R.M. Bonett , A.S. Baldwin & J.J. Wiens (2004). Phylogenetic evidence for a major reversal of life-history evolution in plethodontid salamanders. Evolution 58, 2809–22.

C. Collart , G.E. Allen , C.R. Bradshaw , J.C. Smith & P. Zegerman (2013). Titration of four replication factors is essential for the Xenopus laevis midblastula transition. Science 341, 893–6.

A. Collazo & S.B. Marks (1994). Development of Gyrinophilus porphyriticus: identification of the ancestral developmental pattern in the salamander family Plethodontidae. J. Exp. Zool. 268, 239–58.

A. Collazo & R. Keller (2010). Early development of Ensatina eschscholtzii: an amphibian with a large, yolky egg. Evodevo 1, 6. doi: 10.1186/2041-9139-1-6.

M. D’Amen , L. Vignoli & M.A. Bologna (2006). The normal development and the chromosome No. 1 syndrome in Triturus carnifex carnifex (Caudata, Salamandridae). Ital. J. Zool. 73, 325–33.

J.M. Davenport & K. Summers (2010). Environmental influences on egg and clutch sizes in lentic- and lotic-breeding salamanders. Phyllomedusa 9, 8798.

W.T. Dempster (1933). Growth in Amblystoma punctatum during the embryonic and early larval period. J. Exp. Zool. 64, 495511.

J.N. Dent (1942). The embryonic development of Plethodon cinereus as correlated with the differentiation and functioning of the thyroid gland. J. Morphol. 71, 577601.

A.G. Desnitskiy (2011). On the diversity of the primary steps of embryonic development in the caudate amphibians. Russ. J. Dev. Biol. 42, 207–11.

A.G. Desnitskiy (2014). On the classification of the cleavage patterns in amphibian embryos. Russ. J. Dev. Biol. 45, 110.

R.P. Elinson (1986). Fertilization in amphibians: the ancestry of the block to polyspermy. Int. Rev. Cytol. 101, 59100.

R.P. Elinson & del E.M. Pino (2012). Developmental diversity of amphibians. WIREs Dev. Biol., 1, 345–69.

H.H. Epperlein & M. Junginger (1982). The normal development of the newt, Triturus alpestris (Daudin). Amphibia–Reptilia 2, 295308.

A.C. Eycleshymer (1895). The early development of Amblystoma, with observations on some other vertebrates. J. Morphol. 10, 343418.

H.D. Goodale (1911). The early development of Spelerpes bilineatus (Green). Am. J. Anat. 12, 173247.

H. Grönroos (1895). Zur Entwickelungsgeschichte des Erdsalamanders (Salamandra maculosa Laur.). Anat. Hefte 6, 153247.

K. Hara (1977). The cleavage pattern of the axolotl egg studied by cinematography and cell counting. Roux's Arch. Dev. Biol. 181, 7387.

W.A. Hilton (1909). General features of the early development of Desmognathus fusca. J. Morphol. 20, 533–59.

N. Hirsch , L.B. Zimmerman & R.M. Grainger (2002). Xenopus, the next generation: X. tropicalis genetics and genomics. Dev. Dyn. 225, 422–33.

R.R. Humphrey (1928). Ovulation in the four-toed salamander, Hemidactylium scutatum, and the external features of cleavage and gastrulation. Biol. Bull. 54, 307–23.

I. Irisarri , D. San Mauro , D.M. Green & R. Zardoya (2010). The complete mitochondrial genome of the relict frog Leiopelma archeyi: insights into the root of the frog tree of life. Mitoch. DNA. 21, 173–82.

E.O. Jordan (1893). The habits and development of the newt (Diemictylus viridescens). J. Morphol. 8, 269366.

P.A. Khan & R.A. Liversage (1995). Development of Notophthalmus viridescens embryos. Dev. Growth Differ. 37, 529–37.

M.K. Khokha , C. Chung , E.L. Bustamante , L.W.K. Gaw , K.A. Trott , J. Yeh , N. Lim , J.C.Y. Lin , N. Taverner , E. Amaya , N. Papalopulu , J.C. Smith , A.M. Zorn , R.M. Harland & T.C. Grammer (2002). Techniques and probes for the study of Xenopus tropicalis development. Dev. Dyn. 225, 499510.

D. Kimelman , M. Kirschner & T. Scherson (1987). The events of the midblastula transition in Xenopus are regulated by changes in the cell cycle. Cell 48, 399407.

F.C.E. Knight (1938). Die Entwicklung von Triton alpestris bei verschiedenen Temperaturen, mit Normentafel. Roux's Arch. Entwicklungsmech. Org. 137, 461–73.

K. Kunitomo (1910). Über die Entwickelungsgeschichte des Hynobius nebulosus. Anat. Hefte 40, 193283.

J. Lefresne , Y. Andeol & J. Signoret (1998). Evidence for introduction of a variable G1 phase at the midblastula transition during early development in axolotl. Dev. Growth Differ. 40, 497508.

L.D. Liozner & T.A. Dettlaff (1991). The newts Triturus vulgaris and Triturus cristatus. In: Animal Species for Developmental Studies. Vol. 2 (eds T.A. Dettlaff & S.G. Vassetzky ), pp. 145–65. New York: Consultants Bureau.

S.B. Marks & A. Collazo (1998). Direct development in Desmognathus aeneus (Caudata: Plethodontidae): a staging table. Copeia 1998, 637–48.

Y. Masui & P. Wang (1998) Cell cycle transition in early embryonic development of Xenopus laevis. Biol. Cell 90, 537–48.

D. Mietchen , J.W. Jakobi & H.-P. Richter (2005). Cortex reorganization of Xenopus laevis eggs in strong static magnetic fields. BioMagnetic Res. Technol. 3, 2. doi: 10.1186/1477-044X-3-2.

W.-C. Mo , Y. Liu , H.M. Cooper & R.-Q. He (2012). Altered development of Xenopus embryos in a hypogeomagnetic field. Bioelectromagnetics 33, 238–46.

J. Newport & M. Kirschner (1982a). A major developmental transition in early Xenopus embryos: 1. Characterization and timing of cellular changes at the midblastula stage. Cell 30, 675–86.

J. Newport & M. Kirschner (1982b.) A major developmental transition in early Xenopus embryos: 2. Control of the onset of transcription. Cell 30, 687–96.

R.A. Nussbaum (1987). Parental care and egg size in salamanders: an examination of the safe harbor hypothesis. Res. Popul. Ecol. 29, 2744.

R.A. Pyron & J.J. Wiens (2011). A large-scale phylogeny of Amphibia including over 2800 species, and a revised classification of extant frogs, salamanders, and caecilians. Mol. Phylogenet. Evol. 61, 543–83.

S. Reinhard , S. Voitel & A. Kupfer (2013). External fertilisation and paternal care in the paedomorphic salamander Siren intermedia Barnes, 1826 (Urodela: Sirenidae). Zool. Anz. 253, 15.

S.N. Salthe (1969). Reproductive modes and the number and sizes of ova in the urodeles. Am. Midl. Nat. 81, 467–90.

D San Mauro . (2010). A multilocus timescale for the origin of extant amphibians. Mol. Phylogenet. Evol. 56, 554–61.

W. Schönmann (1938). Der diploide Bastard Triton palmatus ♀ x Salamandra ♂. Roux's Arch. Entwicklungsmech. Org. 138, 345–75.

G.M. Schrenkenberg & A.G. Jacobson (1975). Normal stages of development of the axolotl Ambystoma mexicanum. Dev. Biol. 42, 391–9.

D.M. Sever , J.S. Doody , C.A. Reddish , M.M. Wenner & D.R. Church (1996). Sperm storage in spermathecae of the great lamper eel, Amphiuma tridactylum (Caudata: Amphiumidae). J. Morphol. 230, 7997.

X.X. Shen , D. Liang , Y.J. Feng , M.Y. Chen & P. Zhang (2013). A versatile and highly efficient toolkit including 102 nuclear markers for vertebrate phylogenomics, tested by resolving the higher level relationships of the Caudata. Mol. Biol. Evol. 30, 2235–48.

J. Signoret (1980). Evidence of the first genetic activity required in axolotl development. Res. Probl. Cell Differ. 11, 71–4.

B.G. Smith (1906). Preliminary report on the embryology of Cryptobranchus allegheniensis. Biol. Bull. 11, 146–64.

B.G. Smith (1912). The embryology of Cryptobranchus allegheniensis, including comparisons with some other vertebrates. 2. General embryonic and larval development, with special reference to external features. J. Morphol. 23, 455565.

B.G. Smith (1922). The origin of bilateral symmetry in the embryo of Cryptobranchus allegheniensis. J. Morphol. 36, 357–99.

B.G. Smith (1926). The embryology of Cryptobranchus allegheniensis. 3. Formation of the blastula. J. Morphol. Physiol. 42, 197252.

A. Suzuki , Y. Kuwabara & T. Kuwana (1976). Analysis of cell proliferation during early embryogenesis. Dev. Growth Differ. 18, 447–55.

G.S.O. Svensson (1938). Zur Kenntnis der Furchung bei den Gymnophionen. Acta Zool. 19, 191207.

S. Tripepi , F. Rossi & G. Peluso (1998). Embryonic development of the newt Triturus italicus in relation to temperature. Amphibia–Reptilia 19, 345–55.

J.M. Valles (2002). Model of magnetic field-induced mitotic apparatus reorientation in frog eggs. Biophys. J. 82, 1260–5.

J.M. Valles , S.R.R.M. Wasserman , C. Schweidenback , J. Edwardson , J.M. Denegre & K.L. Mowry (2002). Processes that occur before second cleavage determine third cleavage orientation in Xenopus. Exp. Cell Res. 274, 112–8.

S.G. Vassetzky (1991). The Spanish newt Pleurodeles waltlii. In Animal Species for Developmental Studies. Vol. 2 (eds T.A. Dettlaff & S.G. Vassetzky ), pp. 167201. New York: Consultants Bureau.

D. Vieites , S.N. Román , M.H. Wake & D.B. Wake (2011). A multigenic perspective on phylogenetic relationships in the largest family of salamanders, the Plethodontidae. Mol. Phylogenet. Evol. 59, 623–35.

J.J. Wiens , C.A. Kuczynski , W.E. Duellman & T.W. Reeder (2007). Loss and re-evolution of complex life cycles in marsupial frogs: does ancestral trait reconstruction mislead? Evolution 61, 1886–99.

J.J. Wiens , M. Sparreboom & J.W. Arntzen (2011). Crest evolution in newts: implications for reconstruction methods, sexual selection, phenotypic plasticity and the origin of novelties. J. Evol. Biol. 24, 2073–86.

H.H. Wilder (1904). The early development of Desmognathus fusca. Am. Nat. 38, 117–25.

K. Yamazaki-Yamamoto , K. Takata & Y. Kato (1984). Changes of chromosome length and constitutive heterochromatin in association with cell division during early development of Cynops pyrrhogaster embryo. Dev. Growth Differ. 26, 295302.

P. Zhang , D. Liang , R.L. Mao , D.M. Hillis , D.B. Wake & D.C. Cannatella (2013). Efficient sequencing of anuran mtDNAs and a mitogenomic exploration of the phylogeny and evolution of frogs. Mol. Biol. Evol. 30, 1899–915.

Y. Zheng , R. Peng , M. Kuro-O & X. Zeng (2011). Exploring patterns and extent of bias in estimating divergence time from mitochondrial DNA sequence data in a particular lineage: a case study of salamanders (order Caudata). Mol. Biol. Evol. 28, 2521–35.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

  • ISSN: 0967-1994
  • EISSN: 1469-8730
  • URL: /core/journals/zygote
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 2
Total number of PDF views: 33 *
Loading metrics...

Abstract views

Total abstract views: 248 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 19th October 2017. This data will be updated every 24 hours.