Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-23T13:57:01.268Z Has data issue: false hasContentIssue false

The effect of pre-maturation culture using phosphodiesterase type 3 inhibitor and insulin, transferrin and selenium on nuclear and cytoplasmic maturation of bovine oocytes

Published online by Cambridge University Press:  30 April 2015

A.L.S. Guimarães
Affiliation:
School of Agriculture and Veterinary Medicine, University of Brasilia, Brasília-DF, Brazil.
S.A. Pereira
Affiliation:
Institute of Biology, University of Brasília, Brasília-DF, Brazil.
N.R. Kussano
Affiliation:
School of Veterinary Medicine, University of Uberlândia, Uberlândia-MG, Brazil.
M.A.N. Dode*
Affiliation:
Parque Estação Biológica, Final Av. W5/N, Prédio PBI, 70770–900, Brasília-DF, Brazil. School of Agriculture and Veterinary Medicine, University of Brasilia, Brasília-DF, Brazil. Embrapa-Genetic Resources and Biotechnology, Brasília-DF, Brazil.
*
All correspondence to: Margot Alves Nunes Dode. Parque Estação Biológica, Final Av. W5/N, Prédio PBI, 70770–900, Brasília-DF, Brazil. Tel: +55 61 34484659. Fax: +55 61 3340 3658. E-mail: margot.dode@embrapa.br

Summary

This study aims to evaluate if a pre-maturation culture (PMC) using cilostamide as a meiotic inhibitor in combination with insulin, transferrin and selenium (ITS) for 8 or 24 h increases in vitro embryo production. To evaluate the effects of PMC on embryo development, cleavage rate, blastocyst rate, embryo size and total cell number were determined. When cilostamide (20 μM) was used in PMC for 8 or 24 h, 98% of oocytes were maintained in germinal vesicles. Although the majority of oocytes resumed meiosis after meiotic arrest, the cleavage and blastocyst rates were lower than the control (P < 0.05). When the cilostamide concentration was lowered (10 μM) and oocytes were arrested for 8 h, embryo development was improved (P < 0.05) and was similar (P > 0.05) to the control. The deleterious effect of 20 μM cilostamide treatment for 24 h on a PMC was confirmed by lower cumulus cell viability, determined by trypan blue staining, in that group compared with the other groups. A lower concentration (10 μM) and shorter exposure time (8 h) minimized that effect but did not improve embryo production. More studies should be performed to determine the best concentration and the arresting period to increase oocyte competence and embryo development.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adona, P.R. & Leal, C.L.V. (2004). Meiotic inhibition with different cyclin-dependent kinase inhibitors in bovine oocytes and its effects on maturation and embryo development. Zygote 12, 197204.CrossRefGoogle ScholarPubMed
Adona, P.R. & Leal, C.L.V. (2006). Effect of concentration and exposure period to butyrolactone I on meiosis progression in bovine oocytes. Arq. Bras. Med. Vet. e Zoo. 58, 354–9.CrossRefGoogle Scholar
Aktas, H., Leibfried-Rutledge, M.L. & First, N.L. (2003). Meiotic state of bovine oocytes is regulated by interactions between cAMP, cumulus, and granulosa. Mol. Reprod. Dev. 65, 336–43.CrossRefGoogle ScholarPubMed
Albuz, F.K., Sasseville, M., Lane, M., Armstrong, D.T., Thompson, J.G. & Gilchrist, R.B. (2010). Simulated physiological oocyte maturation (SPOM): a novel in vitro maturation system that substantially improves embryo yield and pregnancy outcomes. Hum. Reprod. 25, 29993011.CrossRefGoogle ScholarPubMed
Anderiesz, C., Fong, C.-Y., Bongso, A. & Trounson, A.O. (2000). Regulation of human and mouse oocyte maturation in vitro with 6-dimethylaminopurine. Hum. Reprod. 15, 379–88.CrossRefGoogle ScholarPubMed
Barretto, L.S.S., Caiado Castro, V.S.D., Garcia, J.M. & Mingoti, G.Z. (2011). Meiotic inhibition of bovine oocytes in medium supplemented with a serum replacer and hormones: effects on meiosis progression and developmental capacity. Zygote 19, 107–16.CrossRefGoogle Scholar
Bilodeau-Goeseels, S. (2011). Cows are not mice: the role of cyclic AMP, phosphodiesterases, and adenosine monophosphate-activated protein kinase in the maintenance of meiotic arrest in bovine oocytes. Mol. Reprod. Dev. 78, 734–43.CrossRefGoogle Scholar
Bilodeau-Goeseels, S. (2012). Bovine oocyte meiotic inhibition before in vitro maturation and its value to in vitro embryo production: does it improve developmental competence? Reprod. Dom. Anim. 47, 687–93.CrossRefGoogle ScholarPubMed
Carolan, C., Lonergan, P., Monget, P., Monniaux, D. & Mermillod, P. (1996). Effect of follicle size and quality on the ability of follicular fluid to support cytoplasmic maturation of bovine oocytes. Mol. Reprod. Dev. 43, 477–83.3.0.CO;2-X>CrossRefGoogle ScholarPubMed
Conti, M., Andersen, C.B., Richard, F., Mehats, C., Chun, S.-Y., Horner, K., Jin, C. & Tsafriri, A. (2002). Role of cyclic nucleotide signaling in oocyte maturation. Mol. Cel. Endocrinol. 187, 153–9.CrossRefGoogle ScholarPubMed
Córdova, B., Morató, R., Izquierdo, D., Paramio, T. & Mogas, T. (2010). Effect of the addition of insulin–transferrin–selenium and/or L-ascorbic acid to the in vitro maturation of prepubertal bovine oocytes on cytoplasmic maturation and embryo development. Theriogenology 74, 1341–8.CrossRefGoogle ScholarPubMed
De Bem, T.H., Chiaratti, M.R., Rochetti, R., Bressan, F.F., Sangalli, J.R., Miranda, M.S., Pires, P.R., Schwartz, K.R., Sampaio, R.V., Fantinato-Neto, P., Pimentel, J.R., Perecin, F., Smith, L.C., Meirelles, F.V., Adona, P.R. & Leal, C.L. (2011). Viable calves produced by somatic cell nuclear transfer using meiotic-blocked oocytes. Cell. Reprog. 13, 419–29.CrossRefGoogle ScholarPubMed
De La Fuente, R., O'Brien, M.J. & Eppig, J.J. (1999). Epidermal growth factor enhances preimplantation developmental competence of maturing mouse oocytes. Hum. Reprod. 14, 3060–8.CrossRefGoogle ScholarPubMed
Dieci, C., Lodde, V., Franciosi, F., Lagutina, I., Tessaro, I., Modina, S.C., Albertini, D.F., Lazzari, G., Galli, C. & Luciano, A.M. (2013). The effect of cilostamide on gap junction communication dynamics, chromatin remodeling, and competence acquisition in pig oocytes following parthenogenetic activation and nuclear transfer. Biol. Reprod. 89, 68.CrossRefGoogle ScholarPubMed
Dieleman, S., Hendriksen, P., Viuff, D., Thomsen, P., Hyttel, P., Knijn, H., Wrenzycki, C., Kruip, T., Niemann, H. & Gadella, B. (2002). Effects of in vivo prematuration and in vivo final maturation on developmental capacity and quality of pre-implantation embryos. Theriogenology 57, 520.CrossRefGoogle ScholarPubMed
Dode, M.A.N. & Adona, P.R. (2001). Developmental capacity of Bos indicus oocytes after inhibition of meiotic resumption by 6-dimethylaminopurine. Anim. Reprod. Sci. 65, 171–80.CrossRefGoogle ScholarPubMed
Gharibi, S., Hajian, M., Ostadhosseini, S., Hosseini, S.M., Forouzanfar, M. & Nasr-Esfahani, M.H. (2013). Effect of phosphodiesterase type 3 inhibitor on nuclear maturation and in vitro development of ovine oocytes. Theriogenology 80, 302–12.CrossRefGoogle ScholarPubMed
Gilchrist, R.B., Lane, M. & Thompson, J.G. (2008). Oocyte-secreted factors: regulators of cumulus cell function and oocyte quality. Hum. Reprod. Update 14, 159–77.CrossRefGoogle ScholarPubMed
Grupen, C.G., Fung, M. & Armstrong, D.T. (2006). Effects of milrinone and butyrolactone-I on porcine oocyte meiotic progression and developmental competence. Reprod. Fert. Dev. 18, 309–17.CrossRefGoogle ScholarPubMed
Guemra, S., da Silva Santo, E., Zanin, R., Monzani, P.S., Sovernigo, T.C., Ohashi, O.M., Verde Leal, C.L. & Adona, P.R. (2014). Effect of temporary meiosis block during prematuration of bovine cumulus–oocyte complexes on pregnancy rates in a commercial setting for in vitro embryo production. Theriogenology 81, 982–7.CrossRefGoogle Scholar
Hammami, S., Morató, R., Romaguera, R., Roura, M., Catalá, M.G., Paramio, M.T., Mogas, T. & Izquierdo, D. (2013). Developmental competence and embryo quality of small oocytes from pre-pubertal goats cultured in IVM medium supplemented with low level of hormones, insulin–transferrin–selenium and ascorbic acid. Reprod. Dom. Anim. 48, 339–44.CrossRefGoogle ScholarPubMed
Holm, P., Shukri, N.N., Vajta, G., Booth, P., Bendixen, C. & Callesen, H. (1998). Developmental kinetics of the first cell cycles of bovine in vitro produced embryos in relation to their in vitro viability and sex. Theriogenology 50, 1285–99.CrossRefGoogle ScholarPubMed
Huanmin, Z. & Yong, Z. (2000). In vitro development of caprine ovarian preantral follicles. Theriogenology 54, 641–50.CrossRefGoogle ScholarPubMed
Jee, B.C., Chen, H.Y. & Chian, R.C. (2009). Effect of a phosphodiesterase type 3 inhibitor in oocyte maturation medium on subsequent mouse embryo development. Fertil. Steril. 91, 2037–42.CrossRefGoogle ScholarPubMed
Jeong, Y.W., Hossein, M.S., Bhandari, D.P., Kim, Y.W., Kim, J.H., Park, S.W., Lee, E., Park, S.M., Jeong, Y.I., Lee, J.Y., Kim, S. & Hwang, W.S. (2008). Effects of insulin–transferrin–selenium in defined and porcine follicular fluid supplemented IVM media on porcine IVF and SCNT embryo production. Anim. Reprod. Sci. 106, 1324.CrossRefGoogle ScholarPubMed
Kubelka, M., Motlík, J., Schultz, R.M. & Pavlok, A. (2000). Butyrolactone I reversibly inhibits meiotic maturation of bovine oocytes, without influencing chromosome condensation activity. Biol. Reprod. 62, 292302.CrossRefGoogle ScholarPubMed
Lee, M.S., Kang, S.K., Lee, B.C. & Hwang, W.S. (2005). The beneficial effects of insulin and metformin on in vitro developmental potential of porcine oocytes and embryos. Biol. Reprod. 73, 1264–8.CrossRefGoogle ScholarPubMed
Lodde, V., Franciosi, F., Tessaro, I., Modina, S. & Luciano, A. (2013). Role of gap junction-mediated communications in regulating large-scale chromatin configuration remodeling and embryonic developmental competence acquisition in fully grown bovine oocyte. J. Ass. Reprod. Gen. 30, 1219–26.CrossRefGoogle ScholarPubMed
Luciano, A.M., Modina, S., Vassena, R., Milanesi, E., Lauria, A. & Gandolfi, F. (2004). Role of intracellular cyclic adenosine 3′,5′-monophosphate concentration and oocyte-cumulus cells communications on the acquisition of the developmental competence during in vitro maturation of bovine oocyte. Biol. Reprod. 70, 465–72.CrossRefGoogle ScholarPubMed
Luciano, A.M., Franciosi, F., Modina, S.C. & Lodde, V. (2011). Gap junction-mediated communications regulate chromatin remodeling during bovine oocyte growth and differentiation through cAMP-dependent mechanism(s). Biol. Reprod. 85, 1252–9.CrossRefGoogle ScholarPubMed
Machado, G.M., Carvalho, J.O., Filho, E.S., Caixeta, E.S., Franco, M.M., Rumpf, R. & Dode, M.A. (2009). Effect of Percoll volume, duration and force of centrifugation, on in vitro production and sex ratio of bovine embryos. Theriogenology 71, 1289–97.CrossRefGoogle ScholarPubMed
Mayes, M.A. & Sirard, M.-A. (2002). Effect of type 3 and type 4 phosphodiesterase inhibitors on the maintenance of bovine oocytes in meiotic arrest. Biol. Reprod. 66, 180–4.CrossRefGoogle ScholarPubMed
Naruse, K., Iga, K., Shimizu, M., Takenouchi, N., Akagi, S., Somfai, T. & Hirao, Y. (2012). Milrinone treatment of bovine oocytes during in vitro maturation benefits production of nuclear transfer embryos by improving enucleation rate and developmental competence. J. Reprod. Dev. 58, 476–83.CrossRefGoogle ScholarPubMed
Nogueira, D., Cortvrindt, R., De Matos, D.G., Vanhoutte, L. & Smitz, J. (2003). Effect of phosphodiesterase type 3 inhibitor on developmental competence of immature mouse oocytes in vitro . Biol. Reprod. 69, 2045–52.CrossRefGoogle ScholarPubMed
Nogueira, D., Cortvrindt, R., Everaerdt, B. & Smitz, J. (2005). Effects of long-term in vitro exposure to phosphodiesterase type-3 inhibitors on follicle and oocyte development. Reproduction 130, 177–86.CrossRefGoogle ScholarPubMed
Oliveira e Silva, I., Vasconcelos, R.B., Caetano, J.V., Gulart, L.V., Camargo, L.S., Bao, S.N. & Rosa e Silva, A.A. (2011). Induction of reversible meiosis arrest of bovine oocytes using a two-step procedure under defined and nondefined conditions. Theriogenology 75, 1115–24.CrossRefGoogle ScholarPubMed
Parrish, J.J., Krogenaes, A. & Susko-Parrish, J.L. (1995). Effect of bovine sperm separation by either swim-up or Percoll method on success of in vitro fertilization and early embryonic development. Theriogenology 44, 859–69.CrossRefGoogle ScholarPubMed
Raghu, H.M., Reddy, S.M. & Nandi, S. (2002). Effect of insulin, transferrin and selenium and epidermal growth factor on development of buffalo oocytes to the blastocyst stage in vitro in serum-free, semidefined media. Vet. Rec. 151, 260–5.CrossRefGoogle Scholar
Romero, S. & Smitz, J. (2010). Improvement of in vitro culture of mouse cumulus–oocyte complexes using PDE3-inhibitor followed by meiosis induction with epiregulin. Fert. Steril. 93, 936–44.CrossRefGoogle ScholarPubMed
Rose, R.D., Gilchrist, R.B., Kelly, J.M., Thompson, J.G. & Sutton-McDowall, M.L. (2013). Regulation of sheep oocyte maturation using cAMP modulators. Theriogenology 79, 142–8.CrossRefGoogle ScholarPubMed
Sasseville, M., Albuz, F.K., Cote, N., Guillemette, C., Gilchrist, R.B. & Richard, F.J. (2009). Characterization of novel phosphodiesterases in the bovine ovarian follicle. Biol. Reprod. 81, 415–25.CrossRefGoogle ScholarPubMed
Shu, Y.M., Zeng, H.T., Ren, Z., Zhuang, G.L., Liang, X.Y., Shen, H.W., Yao, S.Z., Ke, P.Q. & Wang, N.N. (2008). Effects of cilostamide and forskolin on the meiotic resumption and embryonic development of immature human oocytes. Hum. Reprod. 23, 504–13.CrossRefGoogle ScholarPubMed
Sirard, M.A. & Coenen, K. (1993). The co-culture of cumulus-enclosed bovine oocytes and hemi-sections of follicles: effects on meiotic resumption. Theriogenology 40, 933–42.CrossRefGoogle ScholarPubMed
Spicer, L.J. & Echternkamp, S.E. (1995). The ovarian insulin and insulin-like growth factor system with an emphasis on domestic animals. Dom. Anim. Endocrinol. 12, 223–45.CrossRefGoogle ScholarPubMed
Thomas, R.E., Armstrong, D.T. & Gilchrist, R.B. (2002). Differential effects of specific phosphodiesterase isoenzyme inhibitors on bovine oocyte meiotic maturation. Dev. Biol. 244, 215–25.CrossRefGoogle ScholarPubMed
Thomas, R.E., Armstrong, D.T. & Gilchrist, R.B. (2004). Bovine cumulus cell–oocyte gap junctional communication during in vitro maturation in response to manipulation of cell-specific cyclic adenosine 3′,5′-monophosophate levels. Biol. Reprod. 70, 548–56.CrossRefGoogle ScholarPubMed
Ulloa, S.M., Heinzmann, J., Herrmann, D., Timmermann, B., Baulain, U., Grossfeld, R., Diederich, M., Lucas-Hahn, A. & Niemann, H. (2014). Effects of different oocyte retrieval and in vitro maturation systems on bovine embryo development and quality. Zygote 111. [Epub ahead of print]Google Scholar
Vanhoutte, L., De Sutter, P., Nogueira, D., Gerris, J., Dhont, M. & Van der Elst, J. (2007). Nuclear and cytoplasmic maturation of in vitro matured human oocytes after temporary nuclear arrest by phosphodiesterase 3-inhibitor. Hum. Reprod. 22, 12391246.CrossRefGoogle ScholarPubMed
Vanhoutte, L., Nogueira, D., Gerris, J., Dhont, M. & De Sutter, P. (2008). Effect of temporary nuclear arrest by phosphodiesterase 3-inhibitor on morphological and functional aspects of in vitro matured mouse oocytes. Mol. Reprod. Dev. 75, 1021–30.CrossRefGoogle ScholarPubMed
Vanhoutte, L., Nogueira, D., Dumortier, F. & De Sutter, P. (2009). Assessment of a new in vitro maturation system for mouse and human cumulus-enclosed oocytes: three-dimensional prematuration culture in the presence of a phosphodiesterase 3-inhibitor. Hum. Reprod. 24, 1946–59.CrossRefGoogle ScholarPubMed
Webb, R., Marshall, F., Swann, K. & Carroll, J. (2002). Follicle-stimulating hormone induces a gap junction-dependent dynamic change in [cAMP] and protein kinase a in mammalian oocytes. Dev. Biol. 246, 441–54.CrossRefGoogle ScholarPubMed
Yeo, C.X., Gilchrist, R.B. & Lane, M. (2009). Disruption of bidirectional oocyte-cumulus paracrine signaling during in vitro maturation reduces subsequent mouse oocyte developmental competence. Biol. Reprod. 80, 1072–80.CrossRefGoogle ScholarPubMed