Skip to main content

Expression of the T85A mutant of zebrafish aquaporin 3b improves post-thaw survival of cryopreserved early mammalian embryos

  • Sylvia J. Bedford-Guaus (a1) (a2), François Chauvigné (a3), Eva Mejía-Ramírez (a1), Mercè Martí (a1), Antoni Ventura-Rubio (a1), Ángel Raya (a4) (a1) (a2) (a5), Joan Cerdà (a4) (a3) and Anna Veiga (a4) (a1) (a6)...

While vitrification has become the method of choice for preservation of human oocytes and embryos, cryopreservation of complex tissues and of large yolk-containing cells, remains largely unsuccessful. One critical step in such instances is appropriate permeation while avoiding potentially toxic concentrations of cryoprotectants. Permeation of water and small non-charged solutes, such as those used as cryoprotectants, occurs largely through membrane channel proteins termed aquaporins (AQPs). Substitution of a Thr by an Ala residue in the pore-forming motif of the zebrafish (Dario rerio) Aqp3b paralog resulted in a mutant (DrAqp3b-T85A) that when expressed in Xenopus or porcine oocytes increased their permeability to ethylene glycol at pH 7.5 and 8.5. The main objective of this study was to test whether ectopic expression of DrAqp3b-T85A also conferred higher resistance to cryoinjury. For this, DrAqp3b-T85A + eGFP (reporter) cRNA, or eGFP cRNA alone, was microinjected into in vivo fertilized 1-cell mouse zygotes. Following culture to the 2-cell stage, appropriate membrane expression of DrAqp3b-T85A was confirmed by immunofluorescence microscopy using a primary specific antibody directed against the C-terminus of DrAqp3b. Microinjected 2-cell embryos were then cryopreserved using a fast-freezing rate and low concentration (1.5 M) of ethylene glycol in order to highlight any benefits from DrAqp3b-T85A expression. Notably, post-thaw survival rates were higher (P<0.05) for T85A–eGFP-injected than for -uninjected or eGFP-injected embryos (73±7.3 vs. 28±7.3 or 14±6.7, respectively). We propose that ectopic expression of mutant AQPs may provide an avenue to improve cryopreservation results of large cells and tissues in which current vitrification protocols yield low survival.

Corresponding author
All correspondence to: Anna Veiga. Centre de Medicina Regenerativa de Barcelona (CMRB), Barcelona, Spain. E-mail:
Joan Cerdà. Institut de Recerca i Tecnologia Agroalimentàries (IRTA)Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain. E-mail:
Ángel Raya. Centre de Medicina Regenerativa de Barcelona (CMRB), Barcelona, Spain. E-mail:
Hide All
Abas Mazni O., Valdez C.A., Takahashi Y., Hishinuma M. & Kanagawa H. (1990). Quick freezing of mouse embryos using ethylene glycol with lactose or sucrose. Anim. Reprod. Sci. 22, 161–9.
Balaban B., Urman B., Ata B., Isiklar A., Larman M.G., Hamilton R. & Gardner D.K. (2008). A randomized controlled study of human Day 3 embryo cryopreservation by slow freezing or vitrification: vitrification is associated with higher survival, metabolism and blastocyst formation. Hum. Reprod. 23, 1976–82.
Brockbank K.G. & Taylor M.J. (2007). Tissue preservation. In Advances in Biopreservation (eds Baust J.G. & Baust J.M.), pp. 157196. Boca Raton, FL, USA: CRC Press.
Cha S.K., Kim B.Y., Kim M.K., Kim Y.S., Lee W.S., Yoon T.K. & Lee D.R. (2011). Effects of various combinations of cryoprotectants and cooling speed on the survival and further development of mouse oocytes after vitrification. Clin. Exp. Reprod. Med. 38, 2430.
Chauvigné F., Lubzens E. & Cerdà J. (2011). Design and characterization of genetically engineered zebrafish aquaporin-3 mutants highly permeable to the cryoprotectant ethylene glycol. BMC Biotechnol. 11, 34.
Denker B.M., Smith B.L., Kuhajda F.P. & Agre P. (1988). Identification, purification, and partial characterization of a novel Mr 28,000 integral membrane protein from erythrocytes and renal tubules. J. Biol. Chem. 263, 15634–42.
Desai N.N., Goldberg J.M., Austin C. & Falcone T. (2013). The new Rapid-i carrier is an effective system for human embryo vitrification at both the blastocyst and cleavage stage. Reprod. Biol. Endocrinol. 11, 19.
Edashige K., Yamaji Y., Kleinhans F.W. & Kasai M. (2003). Artificial expression of aquaporin-3 improves de survival of mouse oocytes after cryopreservation. Biol. Reprod. 68, 8794.
Edashige K., Tanaka M., Ichimaru N., Ota S., Yazawa K., Higashino Y., Sakamoto M., Yamaji Y., Kuwano T., Valdez D.M. Jr., Kleinhans F.W. & Kasai M. (2006). Channel-dependent permeation of water and glycerol in mouse morulae. Biol. Reprod. 74, 625–32.
Edashige K., Ohta S., Tanaka M., Kuwano T., Valdez D.M. Jr., Hara T., Jin B., Takahashi S., Seki S., Koshimoto C. & Kasai M. (2007). The role of aquaporin 3 in the movement of water and cryoprotectants in mouse morulae. Biol. Reprod. 77, 365–73.
Finn R.N., Chauvigné F., Hlidberg J.B., Cutler C.P. & Cerdà J. (2014). The lineage-specific evolution of aquaporin gene clusters facilitated tetrapod terrestrial adaptation. PLoS One 9, e113686.
Gao G. & Critser J.K. (2000). Mechanisms of cryoinjury in living cells. ILAR J. 41, 187–96.
Gomaa H., Baydoun R., Sachak S., Lapana I. & Soliman S. (2016). Elective single embryo transfer: Is frozen better than fresh? JBRA Assisted Reproduction 20, 37.
Griffin J., Emery B.R., Huang I., Peterson C.M. & Carrell D.T. (2006). Comparative analysis of follicle morphology and oocyte diameter in four mammalian species (mouse, hamster, pig, and human). J. Exp. Clin. Assist. Reprod. 3, 2.
Gutiérrez A., Garde J., Artiga C.G., Muñoz I. & Pintado B. (1993). In vitro survival of murine morulae after quick freezing in the presence of chemically defined macromolecules and different cryoprotectants. Theriogenology 39, 1111–20.
Hagedorn M., Lance S.L., Fonseca D.M., Kleinhans F.W., Artimov D., Fleischer R., Hoque A.T.M.S., Hamilton M.B. & Pukazhenthi B.S. (2002). Altering fish embryos with aquaporin-3 an essential step toward successful cryopreservation. Biol. Reprod. 67, 961–6.
Hansson M.L., Albert S., González Somermeyer L., Peco R., Mejía-Ramírez E., Montserrat N. & Izpisúa Belmonte J.C. (2015). Efficient delivery and functional expression of transfected modified mRNA in human embryonic stem cell-derived retinal pigmented epithelial cells. J. Biol. Chem. 290, 5661–72.
Janik M., Kleinhans F.W. & Hagedorn M. (2000). Overcoming a permeability barrier by microinjecting cryoprotectants into zebrafish embryos (Brachydanio rerio). Cryobiology 41, 2534.
Jin B., Kawai Y., Hara T., Takeda S., Seki S., Nakata Y., Matsukawa K., Koshimoto C., Kasai M. & Edashige K. (2011). Pathway for the movement of water and cryoprotectants in bovine oocytes and embryos. Biol. Reprod. 85, 834–47.
Jin B., Higashiyama R., Nakata Y., Yonezawa J., Xu S., Miyake M., Takahasi S., Kiluchi K., Yazawa K., Mizobuchi S., Niimi S., Kitayama M., Koshimoto C., Matsukawa K., Kasai M. & Edashige K. (2013). Rapid movement of water and cryoprotectants in pig expanded blastocysts via channel processes: its relevance to their higher tolerance to cryopreservation. Biol. Reprod. 87, 112.
Kasai M. (1996). Simple and efficient methods for vitrification of mammalian embryos. Anim. Reprod. Sci. 42, 6775.
Kasai M. & Mukaida T. (2004). Cryopreservation of animal and human embryos by vitrification. Reprod. BioMed. Online 9, 164–70.
King L.S., Kozono D. & Agre P. (2004) From structure to disease: the evolving tale of aquaporin biology. Nat. Rev. Mol. Cell. Biol. 5, 687–98.
Li R., Murphy C.N., Spate L., Wax D., Isom c., Rieke a., Walters E.M., Samuel M. & Prather R.S. (2009). Production of piglets after cryopreservation of embryos using a centrifugation-based method for depilation without micromanipulation. Biol. Reprod. 80, 563–71.
Maehara M., Matsunari H., Honda K., Nakano K., Takeuchi Y., Kanai T., Matsuda T., Matsumura Y., Hagiwara Y., Sasayama N., Shirasu A., Takahashi M., Watanage M., Umeyama K., Hanazono Y. & Nagashima H. (2012). Hollow fiber vitrification provides a novel method for cryopreserving in vitro maturation/fertilization-derived porcine embryos. Biol. Reprod. 87, 18.
Mandal P.K. & Rossi D.J. (2013). Reprogramming human fibroblasts to pluripotency using modified mRNA. Nat. Protoc. 8, 562–82.
Mara L., Casu S., Carta A. & Dattena M. (2013). Cryobanking of farm animal gametes and embryos as a means of conserving livestock genetics. Anim. Reprod. Sci. 138, 2538.
Morató R., Chauvigné F., Novo S., Bonet S. & Cerdà J. (2014). Enhanced water and cryoprotectant permeability of porcine oocytes after artificial expression of human and zebrafish aquaporin-3 channels. Mol. Reprod. Dev. 81, 450–61.
Nakano K., Matsunari H., Nakayama N., Ogawa B., Kurome M, Takahashi M., Matsumoto M., Murakami H., Kaji Y. & Nagashima H. (2011). Cloned porcine embryos can maintain developmental ability after cryopreservation at the morula stage. J. Reprod. Fert. 57, 312–6.
Pedro P.B., Yokoyama E., Zhu S.E., Yoshida N., Valdez D.M. Jr., Tanaka M., Edashige K. & Kasai M. (2005). Permeability of mouse oocytes and embryos at various developmental stages to five cryoprotectants. J. Reprod. Fert. 51, 235–46.
Rizos D., Ward F., Duffy P., Boland M.P. & Lonergan P. (2002). Consequences of bovine oocyte maturation, fertilization or early embryo development in vitro versus in vivo: implications for blastocyst yield and blastocyst quality. Mol. Reprod. Dev. 61, 234–8.
Rizos D., Gutiérrez-Adán A., Pérez-Garnelo S., de la Fuente J., Boland M.P. & Lonergan P. (2003). Bovine embryo culture in the presence or absence of serum: implications for blastocyst development cryotolerance, and messenger RNA expression. Biol. Reprod. 68, 236–43.
Sakagami N., Nishida K., Misumi K., Hirayama Y., Yamashita S., Hoshi H., Misawa H., Akiyama K., Suzuki C. & Yoshioka K. (2016). The relationship between oxygen consumption rate and viability of in vivo-derived pig embryos vitrified by the micro volume air cooling method. Anim. Reprod. Sci. 164, 40–6.
Sales A.D., Lobo C.H., Carvalho A.A., Moure A.A. & Rodrigues A.P.R. (2013). Structure, function, and localization of aquaporins: their possible implications on gamete cryopreservation. Gen. Mol. Res. 12, 6718–32.
Seidel G.E. Jr. (2006). Modifying oocytes and embryos to improve their cryopreservation. Theriogenology 65, 228–35.
Seki S., Kouya T., Hara T., Valdez D.M. Jr., Jin B., Kasai M. & Edashige K. (2007). Exogenous expression of rat aquaporin-3 enhances permeability to water and cryoprotectants of immature oocytes in the zebrafish (Danio rerio). J. Reprod. Dev. 53, 597604.
Tingaud-Sequeira A., Calusinska M., Chauvigné F., Lozano J., Finn R.N. & Cerdà J. (2010). The zebrafish genome encodes the largest vertebrate repertoire of functional aquaporins with dual paralogy and substrate specificities similar to tetrapods. BMC Evol. Biol. 10, 38.
Vajta G. (2013). Vitrification in human and domestic animal embryology: work in progress. Reprod. Fert. Dev. 25, 719–27.
Yamaji Y., Valdez D.M. Jr., Seki S., Yazawa K., Urakawa C., Jin B., Kasai M., Kleinhans F.W. & Edashige K. (2006). Cryoprotectant permeability of aquaporin-3 expressed in Xenopus oocytes. Cryobiology 53, 258–67.
Zeuthen T. & Klaerke D.A. (1999). Transport of water ad glycerol in aquaporin 3 is gated by H+ . J. Biol. Chem. 274, 21631–6.
Zhang T., Rawson D.M., Pekarsky I.B. & Lubzens E. (2007). Low temperature preservation of fish gonad cells and oocytes. In The Fish Oocyte: From Basic Studies to Biotechnological Applications. (eds Babin P., Cerdà J. & Lubzens E.) pp. 411436. Springer: The Netherlands.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

  • ISSN: 0967-1994
  • EISSN: 1469-8730
  • URL: /core/journals/zygote
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 6
Total number of PDF views: 66 *
Loading metrics...

Abstract views

Total abstract views: 393 *
Loading metrics...

* Views captured on Cambridge Core between 5th October 2016 - 12th December 2017. This data will be updated every 24 hours.