Skip to main content

In vitro maturation alters gene expression in bovine oocytes

  • Paulo R. Adona (a1) (a2) (a3), Cláudia L.V. Leal (a3), Fernando H. Biase (a4), Tiago H. De Bem (a3), Lígia G. Mesquita (a3), Flávio V. Meirelles (a3), André L. Ferraz (a5), Luiz R. Furlan (a6), Paulo S. Monzani (a2) (a7) and Samuel Guemra (a2) (a7)...

Gene expression profiling of in vivo- and in vitro-matured bovine oocytes can identify transcripts related to the developmental potential of oocytes. Nonetheless, the effects of in vitro culturing oocytes are yet to be fully understood. We tested the effects of in vitro maturation on the transcript profile of oocytes collected from Bos taurus indicus cows. We quantified the expression of 1488 genes in in vivo- and in vitro-matured oocytes. Of these, 51 genes were up-regulated, whereas 56 were down-regulated (≥2-fold) in in vivo-matured oocytes in comparison with in vitro-matured oocytes. Quantitative real-time polymerase chain reaction (PCR) of nine genes confirmed the microarray results of differential expression between in vivo- and in vitro-matured oocytes (EZR, EPN1, PSEN2, FST, IGFBP3, RBBP4, STAT3, FDPS and IRS1). We interrogated the results for enrichment of Gene Ontology categories and overlap with protein–protein interactions. The results revealed that the genes altered by in vitro maturation are mostly related to the regulation of oocyte metabolism. Additionally, analysis of protein–protein interactions uncovered two regulatory networks affected by the in vitro culture system. We propose that the differentially expressed genes are candidates for biomarkers of oocyte competence. In vitro oocyte maturation can affect the abundance of specific transcripts and are likely to deplete the developmental competence.

Corresponding author
All correspondence to: Paulo R. Adona. Agropecuária Laffranchi. PO box 45. Zip Code: 86125-000 – Tamarana, Paraná. Brazil. Tel: +55 43 33994700. E-mail:
Hide All
Ayres, M., Ayres, J.M., Ayres, D.L. & Santos, A.S. (2007). BioEstat 5.0. Statistical Applications in Biological and Medical Sciences. Sociedade Civil Mamirauá, Brasília, CNPq, 138 pp.
Belli, M., Cimadomo, D., Merico, V., Redi, C.A., Garagna, S. & Zuccotti, M. (2013). The NOBOX protein becomes undetectable in developmentally competent antral and ovulated oocytes. Int. J. Dev. Biol. 57, 35–9.
Beltman, M.E., Forde, N., Furney, P., Carter, F., Roche, J.F., Lonergan, P. & Crowe, M.A. (2010). Characterisation of endometrial gene expression and metabolic parameters in beef heifers yielding viable or non-viable embryos on day 7 after insemination. Reprod. Fertil. Dev. 22, 987–99.
Benjamini, Y. & Yekutieli, D. (2001). The control of the false discovery rate in multiple testing under dependency. Annals Stat. 29, 1165–88.
Bessa, I.R., Nishimura, R.C., Franco, M.M. & Dode, M.A.N. (2013). Transcription profile of candidate genes for the acquisition of competence during oocyte growth in cattle. Reprod. Domest. Anim. 48, 781–9.
Biase, F.H., Fonseca Merighe, G.K., Santos-Biase, W., Martelli, L. & Meirelles, F.V. (2008). Global poly(A) mRNA expression profile measured in individual bovine oocytes and cleavage embryos. Zygote 16, 2938.
Biase, F.H., Martelli, L., Puga, R., Giuliatti, S., Santos-Biase, W.K., Fonseca Merighe, G.K. & Meirelles, F.V. (2010). Messenger RNA expression of Pabpnl1 and Mbd3l2 genes in oocytes and cleavage embryos. Fertil. Steril. 93, 2507–12.
Biase, F.H., Everts, R.E., Oliveira, R., Santos-Biase, W.K., Fonseca Merighe, G.K., Smith, L.C., Martelli, L., Lewin, H. & Meirelles, F.V. (2014). Messenger RNAs in metaphase II oocytes correlate with successful embryo development to the blastocyst stage. Zygote 22, 6979.
Bonnet, A., Bevilacqua, C., Benne, F., Bodin, L., Cotinot, C., Liaubet, L., Sancristobal, M., Sarry, J., Terenina, E. & Martin, P. (2011). Transcriptome profiling of sheep granulosa cells and oocytes during early follicular development obtained by laser capture microdissection. BMC Genomics 12, 417.
Bower, N.I., Moser, R.J., Hill, J.R., Lehnert, S.A. (2007). Universal reference method for real-time PCR gene expression analysis of preimplantation embryos. Biotechniques 42, 199206.
Brunet, S., Dumont, J., Lee, K.W., Kinoshita, K., Hikal, P., Gruss, O.J., Maro, B. & Verlhac, M.-H. (2008). Meiotic regulation of TPX2 protein levels governs cell cycle progression in mouse oocytes. PLoS One 3, e3338.
Caixeta, E.S., Ripamonte, P., Franco, M.M., Junior, J.B. & Dode, M.A.N. (2009). Effect of follicle size on mRNA expression in cumulus cells and oocytes of Bos indicus: an approach to identify marker genes for developmental competence. Reprod. Fertil. Dev. 21, 655–64.
Caixeta, E.S., Sutton-McDowall, M.L., Gilchrist, R.B., Thompson, J.G., Price, C.A., Machado, M.F., Lima, P.F. & Buratini, J. (2013). Bone morphogenetic protein 15 and fibroblast growth factor 10 enhance cumulus expansion, glucose uptake, and expression of genes in the ovulatory cascade during in vitro maturation of bovine cumulus–oocyte complexes. Reproduction 146, 2735.
Chatr-Aryamontri, A., Breitkreutz, B.J., Heinicke, S., Boucher, L., Winter, A., Stark, C., Nixon, J., Ramage, L., Kolas, N., O’Donnell, L., Reguly, T., Breitkreutz, A., Sellam, A., Chen, D., Chang, C., Rust, J., Livstone, M., Oughtred, R., Dolinski, K. & Tyers, M. (2013). The BioGRID interaction database: 2013 update. Nucleic Acids Res. 41, D816–23.
Corcoran, D., Rizos, D., Fair, T., Evans, A.C. & Lonergan, P. (2007). Temporal expression of transcripts related to embryo quality in bovine embryos cultured from the two-cell to blastocyst stage in vitro or in vivo . Mol. Reprod. Dev. 74, 972977.
Fair, T., Carter, F., Park, S., Evans, A.C.O. & Lonergan, P. (2007). Global gene expression analysis during bovine oocyte in vitro maturation. Theriogenology 68, S91–7.
Ferreira, E.M., Vireque, A.A., Adona, P.R., Meirelles, F.V., Ferriani, R.A. & Navarro, P.A.A.S. (2009). Cytoplasmic maturation of bovine oocytes: structural and biochemical modifications and acquisition of developmental competence. Theriogenology 71, 836–48.
Gandolfi, T.A. & Gandolfi, F. (2001). The maternal legacy to the embryo: cytoplasmic components and their effects on early development. Theriogenology 55, 1255–76.
Gasca, S., Pellestor, F., Assou, S., Loup, V., Anahory, T., Dechaud, H., De Vos, J. & Hamamah, S. (2008). Identifying new human oocyte marker genes: a microarray approach. Reprod. Biomed. Online 14, 175–83.
Hao, Z., Stoler, M.H., Sen, B., Shore, A., Westbrook, A., Flickinger, C.J., Herr, J.C. & Coonrod, S.A. (2002). TACC3 expression and localization in the murine egg and ovary. Mol. Reprod. Dev. 63, 291–9.
Heng, S., Cervero, A., Simon, C., Stephens, A.N., Li, Y., Zhang, J., Paule, S., Rainczuk, A., Singh, H. & Quinonero, A. (2011). Proprotein convertase 5/6 is critical for embryo implantation in women: regulating receptivity by cleaving EBP50, modulating ezrin binding, and membrane-cytoskeletal interactions. Endocrinology 152, 5041–52.
Huang, D.W., Sherman, B.T. & Lempicki, R.A. (2009). Systematic and integrative analysis of large gene lists using DAVID Bioinformatics Resources. Nat. Protoc. 4, 4457.
Jiang, J.-Y., Xiong, H., Cao, M., Xia, X., Sirard, M.-A. & Tsang, B.K. (2010). Mural granulosa cell gene expression associated with oocyte developmental competence. J. Ovarian Res. 3, 6.
Kanka, J., Nemcova, L., Toralova, T., Vodickova-Kepkova, K., Vodicka, P., Jeseta, M. & Machatkova, M. (2012). Association of the transcription profile of bovine oocytes and embryos with developmental potential. Anim. Reprod. Sci. 134, 2935.
Katz-Jaffe, M.G., McCallie, B.R., Preis, K.A., Filipovits, J. & Gardner, D.K. (2009). Transcriptome analysis of in vivo and in vitro matured bovine MII oocytes. Theriogenology 71, 939–46.
Knijn, H.M., Gjørret, J.O., Vos, P.L., Hendriksen, P.J., van der Weijden, B.C., Maddox-Hyttel, P. & Dieleman, S.J. (2003). Consequences of in vivo development and subsequent culture on apoptosis, cell number, and blastocyst formation in bovine embryos. Biol. Reprod. 69, 1371–8.
Kolano, A., Brunet, S., Silk, A.D., Cleveland, D.W. & Verlhac, M.-H. (2012). Error-prone mammalian female meiosis from silencing the spindle assembly checkpoint without normal interkinetochore tension. Proc. Natl. Acad. Sci. 109, E1858–67.
Labrecque, R., Vigneault, C., Blondin, P. & Sirard, M.A. (2013). Gene expression analysis of bovine oocytes with high developmental competence obtained from FSH-stimulated animals. Mol. Reprod. Dev. 80, 428–40.
Li, Y., Ray, D. & Ye, P. (2013). Identification of germ cell-specific genes in mammalian meiotic prophase. BMC Bioinform. 14, 113.
Lisboa, L.A., Bordignon, V. & Seneda, M.M. (2012). Immunolocalization of BRG1–SWI/SNF protein during folliculogenesis in the porcine ovary. Zygote 20, 243–8.
Liu, Z. & Zheng, Y. (2009). A requirement for epsin in mitotic membrane and spindle organization. J. Cell Biol. 186, 473–80.
Liu, W., Yin, J., Zhao, G., Yun, Y., Wu, S., Jones, K.T. & Lei, A. (2012). Differential regulation of cyclin B1 degradation between the first and second meiotic divisions of bovine oocytes. Theriogenology 78, 1171–81.
Livak, K.J. & Schmittgen, T.D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25, 402–8.
Mohammadi-Sangcheshmeh, A., Held, E., Ghanem, N., Rings, F., Salilew-Wondim, D., Tesfaye, D., Sieme, H., Schellander, K. & Hoelker, M. (2011). G6PDH-activity in equine oocytes correlates with morphology, expression of candidate genes for viability, and preimplantative in vitro development. Theriogenology 76, 1215–26.
Niemann, H., Carnwath, J.W. & Kues, W. (2007). Application of DNA array technology to mammalian embryos. Theriogenology 68, S165–77.
Pocar, P., Brevini, T.A.L., Perazzoli, F., Cillo, F., Modina, S. & Gandolfi, F. (2001). Cellular and molecular mechanisms mediating the effects of polychlorinated biphenyls on oocyte developmental competence in cattle. Mol. Reprod. Dev. 60, 535–41.
Powell, M.D., Manandhar, G., Spate, L., Sutovsky, M., Zimmerman, S., Sachdev, S.C., Hannink, M., Prather, R.S. & Sutovsky, P. (2010). Discovery of putative oocyte quality markers by comparative ExacTag proteomics. PROTEOMICS – Clinical Applications 4, 337–51.
Sawai, K. (2009). Studies on gene expression in bovine embryos derived from somatic cell nuclear transfer. J. Reprod. Dev. 55, 11–6.
Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D., Amin, N., Schwikowski, B. & Ideker, T. (2003). Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–504.
Sirard, M.-A., Richard, F., Blondin, P. & Robert, C. (2006). Contribution of the oocyte to embryo quality. Theriogenology 65, 126–36.
Smith, S.L., Everts, R.E., Sung, L.Y., Du, F., Page, R.L., Henderson, B., Rodriguez-Zas, S.L., Nedambale, T.L., Renard, J.P., Lewin, H.A., Yang, X., Tian, X.C. (2009). Gene expression profiling of single bovine embryos uncovers significant effects of in vitro maturation, fertilization and culture. Mol. Reprod. Dev. 76, 3847.
Smyth, G.K. (2005). Limma: linear models for microarray data. In Bioinformatics and computational biology solutions using R and Bioconductor (Gentleman, R., Carey, V., Huber, W., Irizarry, R. & Dudoit, S., eds), pp. 397420. Springer.
Smyth, G.K. & Speed, T. (2003). Normalization of cDNA microarray data. Methods 31, 265273.
Sun, S.-C., Liu, H.-L. & Sun, Q.-Y. (2012). Survivin regulates Plk1 localization to kinetochore in mouse oocyte meiosis. Biochem. Biophys. Res. Commun. 421, 797800.
Takahashi, H., Parmely, T.J., Sato, S., Tomomori-Sato, C., Banks, C.A., Kong, S.E., Szutorisz, H., Swanson, S.K., Martin-Brown, S., Washburn, M.P., Florens, L., Seidel, C.W., Lin, C., Smith, E.R., Shilatifard, A., Conaway, R.C. & Conaway, J.W. (2011). Human mediator subunit MED26 functions as a docking site for transcription elongation factors. Cell 146, 92104.
Tomek, W., Torner, H. & Kanitz, W. (2002). Comparative analysis of protein synthesis, transcription and cytoplasmic polyadenylation of mRNA during maturation of bovine oocytes in vitro . Reprod. Domest. Anim. 37, 8691.
Vigneault, C., McGraw, S. & Sirard, M.-A. (2009). Spatiotemporal expression of transcriptional regulators in concert with the maternal-to-embryonic transition during bovine in vitro embryogenesis. Reproduction 137, 1321.
Wolffe, A.P., Urnov, F.D. & Guschin, D. (2000). Co-repressor complexes and remodelling chromatin for repression. Biochem. Soc. Trans. 28, 379–86.
Yamamoto-Honda, R., Honda, Z.I., Ueki, K., Tobe, K., Kaburagi, Y., Takahashi, Y., Tamemoto, H., Suzuki, T., Itoh, K. & Akanuma, Y. (1996). Mutant of insulin receptor substrate-1 incapable of activating phosphatidylinositol 3-kinase did not mediate insulin-stimulated maturation of Xenopus laevis oocytes. J. Biol. Chem. 271, 28677–81.
Yu, J., Hecht, N.B. & Schultz, R.M. (2002). RNA-binding properties and translation repression in vitro by germ cell-specific MSY2 protein. Biol. Reprod. 67, 1093–8.
Yuan, J.S., Reed, A., Chen, F. & Stewart, C.N. Jr (2006). Statistical analysis of real-time PCR data. BMC Bioinformatics 7, 85.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

  • ISSN: 0967-1994
  • EISSN: 1469-8730
  • URL: /core/journals/zygote
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Altmetric attention score

Full text views

Total number of HTML views: 19
Total number of PDF views: 116 *
Loading metrics...

Abstract views

Total abstract views: 603 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 18th July 2018. This data will be updated every 24 hours.