Skip to main content Accesibility Help

Investigation of histone H4 hyperacetylation dynamics in the 5S rRNA genes family by chromatin immunoprecipitation assay

  • Liliana Burlibașa (a1) (a2) and Ilinca Suciu (a2)

Oogenesis is a critical event in the formation of female gamete, whose role in development is to transfer genomic information to the next generation. During this process, the gene expression pattern changes dramatically concomitant with genome remodelling, while genomic information is stably maintained. The aim of the present study was to investigate the presence of H4 acetylation of the oocyte and somatic 5S rRNA genes in Triturus cristatus, using chromatin immunoprecipitation assay (ChIP). Our findings suggest that some epigenetic mechanisms such as histone acetylation could be involved in the transcriptional regulation of 5S rRNA gene families.

Corresponding author
All correspondence to: Liliana Burlibașa. University of Bucharest, Genetics Department, Bucharest, Romania. e-mail:
Hide All
Agalioti, T., Chen, G. & Thanos, D. (2002). Deciphering the transcriptional histone acetylation code for a human gene. Cell 111, 381–92.
Burlibașa, L. & Zarnescu, O. (2013). In vivo effects of trichostatin A—a histone deacetylase inhibitor–on chromatin remodeling during Triturus cristatus spermatogenesis. Anim. Rep. Sci. 142, 8999.
Burlibașa, L., Zarnescu, O., Cucu, N. & Gavrilă, L. (2008). Chromatin dynamics in Triturus cristatus oogenesis – an epigenetic approach, Zygote 16, 315–26.
Chipev, C.C. & Wolffe, A.P. (1992). Chromosomal organization of Xenopus laevis oocyte and somatic 5S rRNA genes in vivo . Mol. Cell. Biol. 12, 4555.
Howe, L.A., Ranalli, T.A., Allis, D.C. & Ausio, J. (1998). Transcriptionally active Xenopus laevis somatic 5S ribosomal RNA genes are packaged with hyperacetylated histone H4, whereas transcriptionally silent oocyte genes are not. J. Biol. Chem. 273, 20693–6.
Lawrence, R.J., Early, K., Pontes, O., Silva, M., Chen, Z.J., Neves, N., Viegas, W. & Pikaard, C.S. (2004). A concerted DNA methylation/histone methylation switch regulates rRNA gene dosage control and nucleolar dominance. Mol. Cells 13, 599609.
McStay, B. (2006). Nucleolar dominance, a model for rRNA gene silencing. Genes Dev. 20, 1207–14.
Reeder, R.H. (1985). Mechanisms of nucleolar dominance in animals and plants. J. Cell Biol. 101, 2013–6.
Reynolds, W.F., Smith, R.D., Bloomer, L.S. & Gottesfeld, J.M. (1982). Organization of Xenopus 5-s-genes in chromatin. Cell Nucleus 11, 6387.
Santoro, R. & Grummt, I. (2005). Epigenetic mechanism of rRNA gene silencing, temporal order of NoRC-mediated histone modification, chromatin remodelling and DNA methylation. Mol. Cell. Biol. 25, 2539–46.
Santoro, R., Li, J. & Grummt, I. (2002). The nucleolar remodelling complex NoRC mediates heterochromatin formation and silencing of ribosomal gene transcription. Nat. Genet. 32, 393–6.
Shestakova, E., Bandu, M.T., Doly, J. & Bonnefoy, E. (2001). Inhibition of histone induces constitutive depression of the b interferon promoter and confers antiviral activity. J. Virol. 75, 3444–52.
Workman, J.L. (2006). Nucleosome displacement in transcription, Genes Dev. 20, 2009–17.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

  • ISSN: 0967-1994
  • EISSN: 1469-8730
  • URL: /core/journals/zygote
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed