Skip to main content Accessibility help

Role of follicle stimulating hormone and epidermal growth factor in the development of porcine preantral follicle in vitro

  • Ji Wu (a1) and Qi Tian (a2)

The aim of the present study was to assess the role of follicle stimulating hormone (FSH), epidermal growth factor (EGF) or a combination of EGF and FSH on the in vitro growth of porcine preantral follicles, estradiol secretion, antrum formation, oocyte maturation and subsequent embryonic development. Porcine preantral follicles were cultured for 3 days in the absence or in the presence of FSH or EGF. Oocytes from these follicles were then matured, fertilized in vitro and embryos were cultured. Estradiol secretion and histological analysis of cultured follicles were also carried out. The results showed that when FSH, or a combination of EGF and FSH, was added to the culture medium, most of preantral follicles grew to antral follicles with high estradiol secretion and the oocytes from these antral follicles could mature, fertilize and develop to the blastocyst stage. Without FSH, or a combination of EGF and FSH, preantral follicles were unable to develop to the antral stage. Histology demonstrated that the resulting follicles were nonantral, estradiol production was reduced and none of their oocytes matured after in vitro maturation. The results indicate the essential role of FSH in promoting in vitro growth of porcine preantral follicle, estradiol secretion, antrum formation, oocyte maturation and subsequent embryonic development. EGF with FSH treatment of porcine preantral follicles improves the quality of oocytes, shown by a higher frequency of embryonic development.

Corresponding author
All correspondence to: Ji Wu, School of Life Science and Biotechnology, Shanghai Jiao Tong University, No. 800. Dongchuan Road, Minhang District, Shanghai, 200240, China. Tel: +86 21 34204933. Fax: +86 21 34204051. e-mail:
Hide All
Abeydeera, L.R., Wang, W.H., Cantley, T.C., Rieke, A. & Day, B.N. (1998). Cocuture with follicular shell pieces can enhance the developmental competence of porcine oocytes after in vitro fertilization: relevance to intracellular glutathione. Biol. Reprod. 58, 213–8.
Anderiesz, A, Ferraretti, AP, Magli, C, Fiorentino, A, Fortini, D, Gianaroli, L, Jones, GM & Trounson, AO. (2000). Effect of recombinant human gonadotrophins on human, bovine and murine oocyte meiosis, fertilization and embryonic development in vitro. Human Reprod. 15, 1140–8.
Boland, N.I., Humpherson, P.G., Leese, H. & Gosden, R.G. (1993). Pattern of lactate production and steroidogenesis during growth and maturation of mouse ovarian follicles in vitro. Biol. Reprod. 48, 798806.
Cain, L., Chatterjee, S. & Collins, T.J. (1995). In vitro folliculogenesis of rat preantral follicles. Endocrinol. 136, 3369–77.
Cook, S.J. & McCormick, F. (1993). Inhibition by cAMP of Ras-dependent activation of Raf. Science 262, 1069–72.
Cortvrindt, R., Smitz, J. & Van Steirteghem, A.C. (1997). Assessment of the need for follicle stimulating hormone in early preantral mouse follicle culture in vitro. Human Reprod. 12, 759–68.
Das, K., Stout, L.E., Hensleigh, H.C., Tagatz, G.E., Phipps, W.R. & Leung, B.S. (1991). Direct positive effect of epidermal growth factor on the cytoplasmic maturation of mouse and human oocytes. Fertil Steril. 55, 1000–4.
Downs, S.M., Daniel, S.A.J. & Eppig, J.J. (1998). Induction of maturation in cumulus cell-enclosed mouse oocytes by follicle-stimulating hormone and epidermal growth factor: evidence for a positive stimulus of somatic cell origin. J. Exp. Zool. 245, 8696.
Eppig, J.J., Schultz, R.M., O'Brien, M. & Chesnel, F. (1994). Relationship between the developmental programs controlling nuclear and cytoplasmic maturation of mouse oocytes. Dev. Biol. 164, 19.
Eppig, J.J, O'Brien, M.. & Wigglesworth, K. (1996). Mammalian oocyte growth and development in vitro. Mol. Reprod. Dev. 44, 260–73.
Eppig, J.J., O'Brien, M.J., Pendola, F.L. & Watanabe, S. (1998). Factors affecting the developmental competence of mouse oocytes grown in vitro: follicle-stimulating hormone and insulin. Biol. Reprod. 59, 1445–53.
Goldenberg, R.L., Reiter, E.O. & Ross, G.T. (1973). Follicle response to exogenous gonadotropins: an estrogen-mediated phenomenon. Fertil. Steril. 24, 121–5.
Gougeon, A. (1982). Rate of follicular growth in the human ovary. In: Van Hall EV
Gore-Langton, R.E. & Daniel, S. A.J. (1990). Follicle-stimulating hormone and estradiol regulate antrum-like reorganization of granulosa cells in rat preantral follicle cultures. Biol. Reprod. 43, 6572.
Gulyas, B.J., Hodgen, G.D., Tullner, W.W. & Ross, G.T. (1977). Effects of fetal or maternal hypophysectomy on endocrine organs and body weight in infant rhesus monkeys (Macaca mulatta): with particular emphasis on oogenesis. Biol. Reprod. 16, 216–27.
Halpin, D.M., Jones, A., Fink, G. & Charlton, H.M. (1986). Postnatal ovarian follicle development in hypogonadal (hpg) and normal mice and associated changes in the hypothalamic-pituitary ovarian axis.J. Reprod. Fertil. 77, 287–96.
Hillier, S.G. (1994). Current concepts of the roles of follicle stimulating hormone and luteinizing hormone in folliculogenesis. Human Reprod. 9, 188–91.
Hillier, S.G., McNatty, K.P., Schoemaker, J. (eds) (1996). Follicular Maturation and Ovulation, pp. 155169, Amsterdam, North Holland: Elsevier.
Hirao, Y., Nagai, T., Kubo, M., Miyano, T., Miyake, M. & Kato, S. (1994). In vitro growth and maturation of porcine oocytes.J. Reprod. Fertil. 100, 333–9.
Johnson, G.L. & Dhanasedaran, N. (1989). The G protein family and their interactions with receptors. Endocrine Reviews 10, 317–31.
Kobayashi, K., Yamashita, S. & Hoshi, H. (1994). Influence of epidermal growth factor and transforming growth factor-α on in vitro maturation of cumulus cell-enclosed bovine oocytes in a defined medium. J. Reprod. Fertil. 100, 439–46.
Li, R., Phillips, D.M. & Mather, J.P. (1995). Activin promotes ovarian follicle development in vitro. Endocrinol. 136, 849–56.
Liu, J., Aronow, B.J., Witte, D.P., Pope, W.F. & La Barbera, A.R. (1998). Cyclic and maturation-dependent regulation of follicle-stimulating hormone receptor and luteinizing hormone receptor messenger ribonucleic acid expression in the porcine ovary. Biol. Reprod. 58, 648–58.
Maizels, E.T., Cottom, J., Jones, J.C. & Hunzicker-Dunn, M. (1998). Follicle stimulating hormone (FSH) activates the p38 mitogen-activated protein kinase pathway, inducing small heat shock protein phosphorylation and cell rounding in immature rat ovarian granulose cells. Endocrinology 139, 3353–6.
McGee, E.A., Perlas, E., Lapolt, P.S., Tsafriri, A. & Hsueh, A.J.W. (1997a). Follicle-stimulating hormone enhances the development of preantral follicles in juvenile rats. Biol. Reprod. 57, 990–8.
McGee, E., Spears, N., Minami, S., Hsu, S.Y., Chun, S.Y., Billig, H. & Hsueh, A.J.W. (1997b). Preantral ovarian follicles in serum-free culture: suppression of apoptosis after activation of the cyclic guanosine 3′,5′-monophosphate pathway and stimulation of growth and differentiation by follicle-stimulating hormone. Endocrinol. 138, 2417–24.
Meijs-Roelofs, H.M., Van Cappellen, W.A., Van Leeuwen, W. & Kramer, P. (1990). Short-and long-term effects of an LHRH antagonist given during the prepubertal period on follicle dynamics in the rat. J. Endocrinol. 124, 247–53.
Nayudu, P.L. & Osborn, S.M. (1992). Factors influencing the rate of preantral and antral growth of mouse ovarian follicles in vitro. J. Reprod. Fertil. 95, 349–62.
Oktay, K., Newton, H., Mullan, J. & Gosden, R.G. (1998). Development of human primordial follicles to antral stages in SCID/hpg mice stimulated with follicle stimulating hormone. Hum. Reprod. 13, 1133–8.
Packer, A.I., Hsu, Y.C., Besmer, P. & Bachvarova, R.F. (1994). The ligand of the c-kit receptor promotes oocyte growth. Dev. Biol. 161, 194205.
Parrott, J.A. & Skinner, M.K. (1997). Direct actions of KL on theca cell growth and differentiation during follicle development. Endocrinol. 138, 3819–27.
Parrott, J.A. & Skinner, M.K. (1998). Thecal cell–granulosa cell interactions involve a positive feedback loop among keratinocyte growth factor, hepatocyte growth factor, and kit ligand during ovarian follicular development. Endocrinol. 139, 2240–5.
Richards, J.S., Jahnsen, T., Hedlin, L., Lifka, J., Ratoosh, S., Durica, J.M. & Goldring, N.B. (1986). Ovarian follicle development: from physiology to molecular biology. Recent Progress in Hormone Research 43, 231–76.
Roy, S.K. & Greenwald, G.S. (1989). Hormonal requirements for the growth and differentiation of hamster preantral follicles in long-term culture. J. Reprod. Fertil. 87, 103114.
Roy, S.K. & Greenwald, G.S. (1990). Immunohistochemical localization of epidermal growth factor-like activity in the hamster ovary with a polyclonal antibody. Endocrinology 126, 1309–17.
Roy, S.K. & Harris, S.G. (1994). Antisense epidermal growth factor oligodeoxynucleotides inhibit follicle-stimulating hormone-induced in vitro DNA and progesterone synthesis in hamster preantral follicles. Mol Endocrinol 8, 1175–81.
Singh, B., Barbe, G.J. & Armstrong, D.T. (1993). Factors influencing resumption of meiotic maturation and cumulus expansion of porcine oocyte–cumulus cell complexes in vitro.Mol. Reprod. Dev. 36, 113–9.
Spears, N., Murray, A.A., Allison, V., Boland, N.I. & Gosden, R.G. (1998). Role of gonadotrophins and ovarian steroids in the development of mouse follicles in vitro. J. Reprod. Fertil. 113, 1926.
Wu, J, Dent, P, Jelinek, T., Wolfman, A., Weber, M.J. & Sturgill,, T.W. (1993). Inhibition of the EGF-activated MAP kinase signaling pathway by adenosine 3′,5′-monophosphate. Science 262, 1065–9.
Wu, J., Nayuyu, P.L., Kiesel, P.S. & Michelmann, H.W. (2000). Luteinizing hormone has a stage-limited effect on preantral follicle development in vitro. Biol. Reprod. 63, 320327.
Wu, J., Emery, B.R. & Carrell, D.T. (2001). In vitro growth, maturation, fertilization, and embryonic development of oocytes from porcine preantral follicles. Biol. Reprod. 64, 375–81.
Wu, J., Chen, Y. & Li, T. (2002). Expression of Fas, p53 and AFP in development of human fetal germ cells in vitro. Zygote 10, 333–40.
Yang, J.G., Chen, W.Y. & Li, P.S. (1999). Effects of glucocorticoids on maturation of porcine oocytes and their subsequent fertilizing capacity in vitro. Biol. Reprod. 60, 929–36.
Yuan, W., Lucy, M.C. & Smith, M.F. (1996). Messenger Ribonucleic Acid for insulin-like growth factors-I and -II, insulin-like growth factor-binding protein-2, gonadotropin receptors, and steroidogenic enzymes in porcine follicles. Biol. Reprod. 55, 1045–54.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

  • ISSN: 0967-1994
  • EISSN: 1469-8730
  • URL: /core/journals/zygote
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed