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Abstract

Data analysis starts by making theoretically informed assumptions about the structure of
the world. Yet, we also typically have reasons for expecting certain types of heterogeneity
in our analysis (e.g. temporally or spatially varying effects). This paper provides a unified
framework for modelling the most common sorts of heterogeneity by leveraging the concept
of ‘complex sparsity’ from machine learning. To implement this idea for social scientific
questions, it is necessary to develop a new inferential procedure as existing methods cannot
quantify uncertainty nor estimate non-linear models without approximations. This paper
addresses this by deriving a new Bayesian representation of complex sparsity and associated
inferential procedures. I apply this framework to a recent paper on segregation and public
goods in the United States (Trounstine 2016), focusing on the usefulness of complex sparsity
in estimating regression-based fixed effects models. I find that while the original specifications
in the paper are not robust to usual methods for addressing unobserved confounding, using
complex sparsity strengthens the paper’s original results.

1 Introduction

Analyzing data in social sciences begins by making assumptions about the world. These assump-

tions have a variety of names including, but not limited to, ‘no omitted variables’, ‘conditional

ignorability, and ‘linearity’. Researchers justify these assumptions by either appealing to some

property of how the data are generated and by using our theoretical knowledge of the question

at hand. With these assumptions, it is possible to estimate our quantities of interest using this

simplified representation of the world as we rarely believe we are in the ‘worst of all possible wor-

lds’ where all units have highly idiosyncratic relationships between independent and dependent

variables.

However, researchers often impose functional form assumptions in our models—not necessarily

because they believe them, but because they lack a principled and robust way of relaxing them

that does not undermine their ability to draw reliable conclusions. For example, a vast amount of

data occurs in an (implicitly) time-series context: A straightforward approach to a robust analysis
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would interact all covariates with dummies for time, i.e. run period-by-period regressions, but

this will likely undermine one’s ability to draw inferences by exploding the number of covariates

and leading to large standard errors (over-fitting or under-powering our results). Further, many

datasets have a geographic dimension; it is often a heroic assumption to assume that the effects

of variables are stable across space, but again relaxing this assumption by interacting variables

with dummies for geography will lead to severe inferential issues. Given those concerns, the most

common approach is to assume stability for most variables—pooling information across time or

space.

This problem is also pressing for scholars estimating causal effects. After one has defended the

identification strategy (randomization, fixed effects, etc.), it is necessary to estimate the causal

quantity of interest. Typically, we target an average causal effect—averaging across time, space,

and unit heterogeneity. This procedure allows one to look for treatment effect heterogeneity by

using our theoretical knowledge without dramatically limiting the power of our analysis. If, for

example, one expects there to be heterogeneity over space, but we are willing to assume that

neighbors are likely similar, then we can quite flexibly estimate spatially varying treatment effects

using this framework. In a fixed effects context, the literature argues that we should include fixed

effects at the ‘smallest’ unit for which there is variation in treatment; for example, one might

include state-fixed effects instead of city-fixed effects. However, if we were willing to assume that

the fixed effects likely do not change often neighboring cities, this framework would allow us to

collapse the fixed effects into groups and thus improve power and efficiency.

Despite having very different provenances, this paper suggests a unified framework to these

problems by leveraging the idea of ‘sparsity’ from statistics and machine learning. In its canonical

form, ‘sparsity’ is the idea that when doing a regression with many covariates (possibly more

than the number of observations), it is plausible to ‘bet’ that many of them are zero and can be

safely ignored in the analysis (Hastie, Tibshirani, and Friedman 2009). We can develop estimation

procedures that use the data to select which variables are non-zero, given our theoretical prior

about a ‘sparse’ world. This paper argues that, if we conceptualize sparsity more broadly, it

can exactly represent most of the functional form assumptions that we make in our analyses.

Thus, rather than imposing homogeneity by fiat, we can use our theoretical knowledge to ‘bet’ on

stability—but estimate a model that allows for heterogeneity when it is relevant.

In the case of geographic analysis above, this would be equivalent to assume that from city

to neighboring city, most coefficients are stable (do not change) but sometimes there are changes.
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The researcher would need to defend that assumption on theoretical grounds, but can remain

agnostic on exactly which variables change, when those changes occur, etc. and thus estimate

a more flexible model for addressing this heterogeneity. Perhaps surprisingly, this can be done

without running into the problems of over-fitting and lack of power noted above by leveraging

the fact that methods to estimate complex sparsity are exactly designed to deal with the case

where the number of parameters is very large. As discussed in more detail later, many of these

procedures for inducing a sparsity model have the asymptotic property of recovering the ‘true’

model with correct standard errors.

The key challenge in implementing these models is two-fold. First, as many of the inferential

procedures have their origins in computer science, they are not suited for social scientific inquiry.

Specifically, most are predicated on a linear model or particular data structures that do not arise

for social scientific questions.1 While approximations exist for non-linear models (e.g. Fan and

Li 2001), this is mostly focused on prediction for the canonical sparse case. As we typically care

about inference, it is important to have techniques that exactly optimize the likelihood function of

interest. Further, again coming from the focus on prediction, there is no easy and straightforward

to accurately quantify the uncertainty in those models. Finally, by focusing on perhaps the most

famous way of inducing sparsity (the LASSO - Tibshirani 1996), their inferential procedures are

saddled with the well-known problems of the LASSO (bias in the non-sparse coefficients) and

are not easily transferable to the more sophisticated types of regularization designed to address

these problems. While fine for purely predictive questions, this is not appropriate when we are

attempting to do inference based on the coefficients themselves.

Fortunately, these canonical sparse models have been translated into Bayesian frameworks that

address most of these problems (Park and Casella 2008; Kyung et al. 2010). However, the Bayesian

turn has one major disadvantage: It is much more computationally demanding to estimate these

models—enough to make them intractable for the normal applied researcher. Indeed, most of the

modern Bayesian methods for inducing sparsity (‘global-local shrinkage’; Polson and Scott 2011a)

are rather computationally challenging to estimate versus the simple LASSO.2

This paper solves these problems by leveraging the Bayesian representation of sparsity to derive

a fast, scalable, and exact method of finding the (penalized) maximum likelihood estimate or the

posterior mode using an EM algorithm (Dempster, Laird, and Rubin 1977). One can use that

1Specifically, when the design matrix is the identity matrix (Tibshirani et al. 2005), but see Tibshirani and
Taylor (2011) for a method that works for a full rank design matrix.

2For example, the horseshoe prior is notoriously difficult to work, e.g. trouble with mixing as noted by Johndrow,
Orenstein, and Bhattacharya (2018) or reliance on more complicated samplers as in Carvalho, Polson, and Scott
(2010), with despite having good theoretical properties.

3



point estimate for prediction or, if measures of uncertainty are desired, it can be used to start

the fully Bayesian sampler—itself simple to estimate—and thus achieve rapid convergence. This

framework will work for a wide class of types of sparsity (including all those outlined above)

as well as allowing the researcher to arbitrarily ‘mix and match’ types of sparsity depending on

their particular data structure. By employing other work in Bayesian data augmentation, this

framework also applies to the most common dependent variables found in our research (linear,

binary, count, ordinal, and multinomial) without requiring approximations. To address the issues

with the LASSO penalty, I show that the fast framework for inference can be adapted to include

other forms of sparsity including the adaptive LASSO, LASSOplus (Ratkovic and Tingley 2017),

and other existing global-local priors.

The insight behind this framework is the following: Conditional on data augmentation, explai-

ned in detail later in the paper, these complex types of sparsity can be cast as a mixture of normals

and thus iteratively weighted least squares can be used to find a posterior mode. In many cases, if

we condition on the strength of regularization and have a ‘normal’ likelihood function, this is the

unique posterior mode. For a very large class of complex sparsity, estimation can be made even

faster by noting that they can be written as dynamic or sparse linear models for which a large

amount of pre-existing theory allows us to solve rapidly. Thus, by iterating between augmenta-

tion and maximization, I show that an EM algorithm (Dempster, Laird, and Rubin 1977) can

be used to deterministically find a posterior mode. Overall, with these results in hand and with

the accompanying package, it is possible for social scientists to estimate more plausible models by

incorporating their explicit assumptions about the complex types of sparsity in their data—and

thus allowing heterogeneity from that assumption to appear.

I apply this framework to estimating models with fixed effects, focusing on the most common

approach of estimating these via simple regression adjustment.3 The main trade-off in this appro-

ach is that while this is a causally credible strategy, including fixed effects at the smallest level of

aggregation for which there is variation on the treatment variable is a very data-intensive strategy.

Often, the data does not have much variation at that level and thus the associated estimates are

very noisy, limiting the ability to draw reliable conclusions. I suggest that complex sparsity pro-

vides a way of increasing the efficiency of fixed effects point estimates if the researcher is willing

to assume (and defend) that there is likely some structure in the underlying heterogeneity.

Specifically, I focus on a recent paper by Trounstine 2016 that examines the role of residential

3See Imai and Kim (Forthcoming) for a discussion of the downsides of this approach and different inferential
strategies based on matching. The results here can also be applied to that framework insofar as it can be cast as a
(weighted) linear model with unit-specific dummy variables, e.g. estimation of unit-varying time trends.
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segregation in American cities on political outcomes and public goods provision. I show that

complex sparsity can help bolster the results in two ways; first, re-examining the results on political

outcomes shows that the reported specification does not effectively control for unit-level unobserved

confounding. Doing so correctly via classic fixed effects approach leads to a point estimate that

is underpowered and insignificant. Complex sparsity, however, shows that even weak assumptions

of groups in the underlying heterogeneity leads to clearly statistically significant effects. Second,

I examine the robustness of the results on public goods provisions to time-varying unobserved

heterogeneity. I show that, again, the typical approach of including unit-specific time trends leads

to a smaller and insignificant result. Complex sparsity, assuming that many units shared the

same underlying unobserved time trend, agrees that the effect is noticeably smaller than the one

reported in the original results, but it retains statistically significance.

2 The Flavors of Sparsity

Any overview of sparsity should probably start by discussing the LASSO (Tibshirani 1996). Fully

known as the ‘Least Absolute Shrinkage and Selection Operator’, it can be most straightforwardly

thought of as a way to estimate a penalized maximum likelihood model. Instead of simply finding

the set of coefficients β that maximize the likelihood, one finds the β that maximize the likelihood

minus a penalty term that penalizes more ‘complex’ models. For the LASSO, the penalty term

is
∑
j λ|βj | for each coefficient in β. The power of this penalty is that, at the optimum, many of

the coefficients would be set to exactly zero and thus induces sparsity in its results. Further, the

LASSO can be estimated when there are more variables than observations. From this innovation,

a huge cottage industry of flavors of LASSO has grown in the computer science and statistics

literature. Table 1 synthesizes some of the major variants, especially those from the original cre-

ators of the LASSO and their co-authors, that are especially relevant to social science questions.4

The original (‘vanilla’) LASSO penalizes single coefficients to be zero. This enforces the common

idea of ‘sparsity’. The next four restrictions are all particular instantiations of the ‘generalized

LASSO’ (Tibshirani and Taylor 2011) that penalize linear combinations of coefficients; different li-

near combinations have different properties, and thus I outline some common sub-types of complex

4This is not exhaustive; some other important variants are the group LASSO (Yuan and Lin 2006), the graphical
LASSO (Friedman, Hastie, and Tibshirani 2008), the elastic net (Zou and Hastie 2005), and the adaptive LASSO
(Zou 2006). The (naive) elastic net is trivially included in this framework by recasting the quadratic (ridge) penalty
as part of the transformed covariate matrix. The group LASSO is discussed extensively in other work by the author
(Goplerud 2018b) and briefly integrated into this framework in Appendix B. Incorporating the graphical LASSO
into this framework is an interesting area for future research. The adaptive LASSO, and its variants, are trivially
included by modifying λ by variable or group specific weights as outlined in later sections.
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sparsity that are important enough to warrant their own names. ‘Temporal’ sparsity is the idea

that coefficients should be fused to some immediately prior value (the ‘fused’ LASSO; Tibshirani

et al. 2005). ‘Functional’ sparsity is the idea that coefficients should be fused in some polynomial

way; for example, ‘first-order functional sparsity’ would create a piece-wise linear relationship be-

tween the coefficients. As Table 1 shows, we see that if and only if the three βj,t lie on a line, is

the penalty zero. Higher order functional sparsity is designed to mimic the behavior of smoothing

splines without having to select complicated tuning parameters such as knots in advance (Kim

et al. 2009; Tibshirani and Taylor 2011; Tibshirani 2014).5 ‘Geographic’ sparsity is the idea that

neighboring geographic units should have their coefficients fused together; this would suggest that

the effect of a covariate may vary county-by-county, but that neighboring counties should have

similar values. ‘Categorical’ sparsity is the idea that we want to shrink all elements of βj to all

other elements, i.e. a network where every element of βj is connected.6 This would be the way to

take a many-leveled categorical variable and attempt to find clusters of levels with the same effect

by shrinking them all together.

Beyond the generalized LASSO, the major other conceptual innovation is to force groups of

coefficients to be all zero, e.g. contrast-coded categorical variables (Yuan and Lin 2006), and more

generally quadratic combinations of variables to be zero; this is known as the ‘group LASSO’.

This has the benefit of shrinking entire groups of coefficients to zero; this would be useful if one

wanted to say, exclude a categorical variable entirely.7 Detailed exploration of this is left to future

research, but Appendix B outlines how it can easily be integrated into this framework.

From this table, we already see that the combination of the generalized LASSO and its par-

ticular instantiations and the group LASSO give us many types of theoretically relevant sparsity

that we would want to model in our data. However, the framework outlined in this paper allows

for us to go further: Some particularly interesting types of sparsity can be created by mixing

5The exact formula for a penalty of some polynomial order k is as follows (Tibshirani and Taylor 2011). For
some βj,t where t ≤ T − k − 1,

λ|
t+k+1∑

s

(−1)s−t
(k + 1

s− t

)
βj,s|

For example, second-order polynomial sparsity would have βj,1 − 3βj,2 + 3βj,3 − βj,4 inside the absolute value
function.

One can think of ‘0-order’ functional sparsity as equivalent to the temporal LASSO. Further, ‘-1-order’ functional
sparsity gives the same penalty as the vanilla LASSO.

6In effect, one can think of both geographic and categorical sparsity as such: There is an undirected graph where
the nodes are the set of coefficients. Any connected nodes should be penalized to be equal, i.e. the absolute value
of the difference of the coefficients. Geographic sparsity connects only those adjacent nodes; categorical sparsity is
a fully connected network where all coefficients are connected to each other.

7As Simon et al. (2013) note, however, if some group was not pulled to zero, there would be no sparsity penalty
on the individual coefficients; thus, they propose a combination penalty of the group LASSO and original LASSO
sparsity (vanilla). The framework in this paper admits an arbitrary mixture of generalized and group sparsity.
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Table 1: Taxonomy of Sparsity

Name Penalty Effect Examples

Vanilla λ|βj | Shrink to Zero Classification with Text
Data

Temporal λ|βj,t − βj,t−1| Shrink to Past Value Change Point Detection
Functional λ|βj,t−2βj,t+1+βj,t+2|

(k = 1)
Shrink to Polynomial Non-Linearities in

Explanatory Variables
Geographic λ||Gβj ||1 Shrink to Neighbors Geographic Heterogeneity
Categorical λ||Cβj ||1 Shrink to All Others Collapsing Categorical

Variables

Selected ‘Mixed’ Variants
(1) Temporal Sparse LASSO λ1|βj,t|+ λ2|βj,t − βj,t−1|

Note: G, C. denote matrices to induce the stated pattern of sparsity. G and C are particular examples of the
generalized LASSO (Tibshirani and Taylor 2011) where G includes one row for every pair of neighboring units
and C includes one row for every pair of elements of βj . α represents an observation-specific parameter added to
robustify against outliers. See the text for a discussion.

the types together (e.g. ‘temporal sparse LASSO’, i.e. shrink many coefficients to zero and to

their past values) as other cases of the generalized LASSO.8 As there are nearly infinitely many

relevant types of sparsity to impose, I focus on the generalized case in the main text for clarity

of exposition; Appendix B outlines the specifics of the other cases and discusses some details of

implementation.

The key problem, however, when examining the richness of the flavors of sparsity is that

inference—even in the simple LASSO case—is rather challenging. After iterating through a va-

riety of techniques, a very popular estimation framework for estimating the vanilla LASSO is

cyclical coordinate descent (Friedman et al. 2007) and is implemented in a fast R package glmnet

(Friedman, Hastie, and Tibshirani 2010). This method that optimizes one element of β at a time—

holding all other elements constant—and cycles through the elements of β repeatedly until the

objective function has converged.9 Using results from Tseng (2001), it can be shown this method

is guaranteed to converge as the problem can be written as a (concave) likelihood function `(β)

plus a series of separable convex penalties hj(βj)—even if they are not differentiable:

`(β)−
∑
j

hj(βj) (1)

8Other types of sparsity, however, can be developed by combining the group LASSO with the more traditional
types of sparsity. Consider the group-sparse temporal LASSO: Imagine that we were attempting to predict vote
intention using the seven-point partisanship scale. A group-sparse temporal LASSO penalty would encourage (i)
all six dummy variables to be equal to their prior values; (ii) even if all six are not fused, the individual dummy
variables are encouraged to be equal to their prior values. Alternatively, one could imagine a ‘group functional
LASSO’ that encouraged the trends in each of these coefficients over time to be linear. See Goplerud (2018b) for
discussion of these cases.

9Another popular method in computer science, OWL-QN, relies on a quasi-Newton procedure (Andrew and Gao
2007).
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Note, however, that all of the more complex cases violate this rule as multiple βj are ‘linked’

together in the penalty functions. Thus, for a cyclical algorithm to work in a straightforward

fashion, it should optimize all of the linked coefficients—i.e. all of the βj in a group such as all

of the βj,t with temporal sparsity. Modified versions of the cyclical algorithm have been proposed

for particular cases of the linear model; for example, Friedman et al. (2007) discuss estimation

algorithms for the temporal LASSO. However, they note that their framework is not guaranteed

convergence for a general regression case and thus is likely not fit for purpose for general social

science research. Tibshirani and Taylor (2011) provides an algorithm for the generalized LASSO,

including the temporal LASSO as a special case, but notes that their procedure as well runs

into trouble in the case when we have more variables than observations (or the design matrix

is not full rank) and requires a rather ad hoc fix.10 Further, as the combinations of penalties

grow more complex and possibly differ across variables, the existing cyclical approaches or other

forms of convex optimization require careful tailoring to the particular case at hand. Moreover,

optimization algorithms may exist, they are not designed to have the rapid speed of the cyclical

method and thus scale much less well as the size of the data grows.11 Finally, their frameworks are

only suited for the generalized LASSO; this may, however, be fruitfully combined with the group

LASSO and, in this case, their algorithms are not suitable for inference. Oelker and Tutz (2017)

discusses an alternative framework for estimating the generalized and group LASSO, although

inference is again based on approximations (even in the linear model).

3 Inference Using The Bayesian Turn

I tackle this problem by this problem by leveraging the Bayesian formulations of the (vanilla)

LASSO. Instead of thinking of the LASSO as a penalty on a likelihood function to ensure a

sparse solution, we can think of it as imposing a prior on the coefficients that corresponds to a

posterior mode where many are zero and where most of their posterior mass is located near zero.

A key advantage of the Bayesian LASSO formulation is that it can be made easily tractable via

data augmentation. Park and Casella (2008) showed LASSO penalty corresponds exactly to the

posterior mode if one put a double exponential (Laplace) prior on the βj : p(βj) = λ/2 exp(−λ|βj |).
10The fix is adding a ridge penalty to make the data matrix invertible; however, the results seem rather sensitive

to exactly the amount of ridge stabilization added and thus adds in yet another tuning parameter to the model.
Appendix A outlines a more plausible way of choosing a ridge prior if this strategy is to be employed

11An advantage of the generalized LASSO algorithm, however, is that it automatically paths of the coefficients
as λ grows. Appendix D discusses the way to replicate this behavior in this framework.
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To make this tractable, they rely on a crucial result by Andrews and Mallows (1974):

∫ ∞
0

1√
2πτ

exp

(
−β2

j

2τ
− λ2γ

2

)
λ2

2
dτ =

λ

2
exp(−λ|βj |) (2)

This shows that we can represent the double exponential prior as a mixture of normal priors.

Many other types of sparsity can be created by changing the mixing distribution on τ2
j (Polson

and Scott 2011a).

βj ∼ N(0, τ2
j ); τ2

j ∼ Exp(λ2/2) (3)

If one were to take the joint density of p(βj , τ
2
j ) and integrate away the τ2

j , one would exactly

recover the double exponential prior that corresponds to the LASSO penalty. The posterior

associated with the Bayesian LASSO is not inherently sparse, but a wide array of procedures exist

for enforcing sparsity ex post (e.g. thresholding small coefficients, see Belloni and Chernozhukov

2013 for a discussion of the non-Bayesian case) or one can simply use the posterior itself. Kyung

et al. (2010) extend these results to show how some other types of sparsity can be encoded.

To extend the vanilla case to the generalized case, however, some more work is needed. Starting

with a simple case, the temporal LASSO involves specifying a dependent prior that is a simple

location shift of the double exponential prior:

p(βj,t|βj,t−1) = λ/2 exp(−λ|βj,t − βj,t−1|) (4)

One can think of this as putting a vanilla sparsity penalty on the ‘gap’ between two coefficients

in a time series; thus, at the optimum, it will shrink the gaps between two temporally adjacent

coefficients to zero. Thus, upon augmentation, it becomes:

βj,t|τ2
j,t, βj,t−1 ∼ N(βj,t−1, τ

2
j,t) (5a)

τ2
j,t ∼ Exp(λ2/2) (5b)

Again, if one were to integrate away the τ2
j,t, we recover a prior on βj,t|βj,t−1 that implies

a posterior mode that exactly agrees with the temporal LASSO. This can be put even more

generally to capture the types of sparsity listed in Table 1. Encoding the most generic form of the

generalized LASSO as a Bayesian prior would suggest that the (marginal) prior on the coefficients
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would be written as follows, where D has dimensionality K × p. For notation, wD is a constant

that depends on D and the density is only proportional to a constant that does not depend on λ.

p(β) ∝ λrank(D)wD exp(−λ||Dβ||) (6)

Appendix B derives this result—that is non-trivial—and shows that the prior corresponding

to a generalized LASSO penalty and that enforces arbitrary types of complex sparsity for any D

is written as above. It also discusses the conditions under which the prior is proper and how it

can be modified to ensure this for rank deficient.12 If rank(D) = p, then the density above is

normalized. In the case of rank(D) 6= p, the Appendix shows that one can recast the problem

into a generalized LASSO penalty on some m-dimensional vector of coefficients on an orthogonally

rotated design matrix and thus derive the normalizing constant—although for inference, it is easier

to work with D. The joint (augmented) prior can be written as follows:

p(β, {τ2
k}Kk=1) ∝ wDλ

rank(D)−K
K∏
k=1

1√
2πτ2

k

exp

(
−β

Tdkd
T
k β

2τ2
k

− λ2/2τ2
k

)
λ2/2 (7)

This joint prior has some pleasing properties; first, the structure of the conditional priors,

i.e. β|{τ2
k}Kk=1 and τ2

k |β, have exactly the same form as in the vanilla case—normal and inverse

Gaussian, respectively. The one caveat is that, for the generic case, the normal distribution

that corresponds to β|{τ2
k} conditional prior may not be full rank. As shown in Appendix B,

however, this can be cast as a singular multivariate normal—one generated from a full rank

multivariate normal in m-dimensional—and thus the density can be represented using the Moore-

Penrose pseudo-inverse, denoted by A+. When it is full rank, this equals the usual inverse. Noting

that τ stacks the {τ2
k} into a diagonal matrix, the conditionals of the prior can be written as:

β|{τ2
k}Kk=1 ∼ N

(
0,
(
DT τ−1D

)+)
; DT τ−1D =

K∑
k=1

dkd
T
k

τ2
k

(8a)

τ2
k |β ∼ InverseGaussian

(
λ

|dTk β|
, λ2

)
(8b)

Thus, most of the existing architecture can be adapted for Bayesian inference in the generalized

case. Appendix B outlines the particular D needed for each of the subtypes in Table 1, following

12A proper prior and thus proper posterior on β can be always guaranteed by either (a) adding a weak (but
proper) normal prior in addition to the complex sparsity or (b) adding a vanilla LASSO penalization to all elements
of β. The first would correspond to a generalization of the “elastic net” (Zou and Hastie 2005) for complex sparsity.
See Appendix B for a discussion of some of the subtleties of the elastic net analogue.
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results from Tibshirani and Taylor (2011). This extends the existing work on Bayesian LASSOs

using certain types of complex sparsity to include the existing cases outlined by other scholars

(Kyung et al. 2010; Betancourt, Rodŕıguez, and Boyd 2017; Roualdes 2015; Faulkner and Minin

2018), but extends this work by allowing a general framework for the generalized LASSO to be

integrated into the existing Bayesian methodology.13 Further, the application to “categorical” or

“geographic” sparsity, as discussed in the application, represents a novel extension of the genera-

lized LASSO into the Bayesian domain (though see Pauger and Wagner 2018 who use a different

regularization scheme, spike-and-slab, for Bayesian categorical fusion). Finally, this formulation

sheds some interesting light on the the properties of a Bayesian generalized LASSO: Note that

only when rank(D) = K, i.e. it has fewer rows than columns such as in the case of functional

or temporal sparsity, can the marginal prior on {τ2
k} be written as a product of independent ex-

ponentials as in the vanilla case. Interestingly, for more complex types of sparsity, the marginal

prior distribution of {τ2
k} is rather complex; fortunately, we do not need to work with this directly

for most of the problems discussed in this paper.

4 Fast Estimation of Complex Sparsity Using the EM Al-

gorithm

Another major methodological contribution of this paper, however, is to leverage this integrated

Bayesian representation to show that we can use an exact EM algorithm to find a posterior

mode. The EM inference approach has a number of desirable properties; first, it has guaranteed

convergence to a (local) posterior mode. If the likelihood function is concave and the penalties

are all convex, the entire posterior is concave and thus has a single (unique) posterior mode that

the EM algorithm is guaranteed to locate. This approach can be estimated in a way that avoids

the issues with the existing framework for complex LASSOs insofar as, after augmentation, it is

possible to update an entire sequence of connected coefficients at once—but cycle through groups

of connected coefficients—using a variety of fast techniques that exploit the sparsity structure but

still guarantee convergence. The major downside of this EM approach is that its convergence may

13Appendix B describes how the group LASSO is integrated into this framework. Some limited work uses a
Bayesian implementation of the generalized LASSO, see Roualdes (2015) and Faulkner and Minin (2018) for an
application to the functional LASSO. Kyung et al. (2010) propose a Gibbs Sampler for the sparse temporal LASSO
that, while valid, is inefficient for any LASSO with a simple temporal [fusion] penalty as it does not exploit the
standard method for estimating dynamic linear models—forwards filtering, backwards sampling (Früwirth-Schnatter
1994) and thus the sampler outlined in this paper will likely perform better in terms of mixing even on the simple
temporal case, see also Betancourt, Rodŕıguez, and Boyd (2017) for an implementation along these lines.
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be slow, it does not return standard errors, and it may get stuck in a local mode if the posterior is

multimodal. For the first problem, there is a large literature on how to speed up EM algorithms—

with or without maintaining deterministic convergence (McLachlan and Krishnan 2008).14 The

second problem (lack of standard errors) is more complicated, but one could rely on a bootstrap

approach or adapting some existing theoretical work (e.g. Ratkovic and Tingley 2017). In this

paper, I rely on the “hybrid” idea of using the EM algorithm to identify the structure of sparsity

and then run the corresponding maximum likelihood model on the transformed design matrix

(Tibshirani et al. 2004); this is discussed in detail later. The third is often not a problem as the

likelihood function is concave and the penalty is convex so a unique mode exists, but sometimes

arises in more complex cases.

Both of these initial issues can be addressed, however, by using the fully Bayesian approach

that samples from the posterior and thus gets measure of uncertainty (via credible intervals) and

can move between local modes. This approach may be slow, however, given that the EM approach

if fast and ends up in an area of high posterior density, starting the algorithm from that point

should lead to rapid convergence by the Gibbs Sampler.

To do all of this, a crucial analytical result is to show that, conditional upon augmentation,

we can write all of these penalties in the framework of a normal linear model with highly sparse

data when employing complex sparsity. Even in otherwise complex cases, the sparse nature of the

data combined with the common forms of sparsity means that specialized techniques for solving

high-dimensional systems can be leveraged to estimate these complex cases. Appendix B provides

details, but it is illustrative to focus on a particular example: To preview the case outlined below,

I re-examine the results in Trounstine 2016’s paper on segregation and the provision of public

goods, but I allow the effect of time to vary by city to address unobserved heterogeneity. As I

show below, there are serious issues in terms of power and inference to including 2,000 city-specific

linear time trends directly. For inference, however, the data matrix corresponding to that series

of year-by-city has a huge dimensionality (about 14,000 by 4,000) but is almost entirely sparse.

Thus, actually using this matrix in practice, as long as one relies on existing specialized techniques

and matrix identities, is very efficient (Rue 2001; Bhattacharya, Chakraborty, and Mallick 2016)

Unlike existing software that struggles to estimate such a model, and is unable to calculate cluster

or robust standard errors, careful exploitation of the sparse structure makes this fairly doable.

In my re-analysis, I impose a type of geographic sparsity (cities within states are encouraged to

14Neal and Hinton (1998) provide a number of interesting suggestions in terms of sub-sampling in very large
cases.
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be equal), and this implies that DTD is also highly sparse.15 Thus, as the relevant least squares

that must be solved (XTX +DT τ−1D) can be done very efficiently. In some other special cases

(functional sparsity, temporal sparsity), even more efficient solvers can be employed.16

Another major benefit of this integrated Bayesian framework is that data augmentation can

be used for non-linear outcomes to immediately, at almost no computational cost per iteration,

extend fast estimation of complex sparsity to most types of non-linear models (binomial, negative

binomial, and multinomial). Unlike existing implementations of the LASSO for non-linear models

that require approximations (e.g. Fan and Li 2001), this means that the point estimates from

this model correspond exactly the associated (penalized) maximum likelihood and thus are more

suitable for inference than approximate methods. The exact algorithms for the non-linear models

are sketched in Appendices C and E and work by employing other data schemes outlined in

more detail elsewhere (Polson, Scott, and Windle 2013, see Goplerud 2018a for an overview with

applications to political science). Because of the fact that a Gibbs Sampler exists to estimate the

entire model, this means that the EM algorithm falls out rather automatically for most models.

I sketch the algorithm in the simplified linear model: Assume that our data are generated

yi ∼ N(xTi β, 1) where σ2 is assumed known and equal to one for exposition only. We place a

sparsity inducing prior of p(β) ∝ exp(−λ||Dβ||1). To estimate the model via the EM algorithm, we

rely on the results shown above about the representation of the penalty as conditionally normal

or inverse-Gaussian after augmentation. The Gibbs Sampler samples from the corresponding

distribution rather than replacing it with the mean or mode.

• For some number of iterations t, do the following, where superscript (t) denotes the results

from iteration t.

– Update τ2
k as follows (E-Step):

[(τ2
k )∗](t) =

λ

dTk β
(t−1)

– Perform a modified least squares update for β (ridge regression; M -Step):

β(t) =
(
XTX +DT [τ−1]∗D

)−1
XTy; [τ−1]∗i,i = [(τ2

k )∗](t)

15Categorical sparsity, unfortunately, results in a dense DTD which for some dimensionality is fine, but at some
point becomes too costly to use. One could adjust my assumption of state-specific geographic sparsity by perhaps
having neighboring cities in different states also be linked.

16Functional sparsity is very similar and requires the usual trick of turning an autoregressive model into a state-
space model (West and Harrison 1997). Group sparsity involves a dynamic linear model over all coefficients in the
group.
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Iterating this repeatedly is guaranteed to increase the log-posterior and converge to the global

maximum if the objective function is concave. Further, note that if we have many variables that

are separately modelled with complex sparsity (e.g. geographic sparsity for counties; functional

sparsity for age, etc.), then these can be updated separately in an ECM (Meng and Rubin 1993)

but still have guarantees on convergence as the penalties are additively separable across blocks

(Tseng 2001).The extension to non-linear models is derived complete in Appendix C but simply

involves one additional step in the sampler.

5 Estimating the Strength of Regularization

Throughout the paper, I have been assuming that the strength of prior encouraging sparsity (λ) is

held constant. λ is a crucial parameter for models with sparsity as it governs the extent to which

the resulting model is sparse; one can also think of it as encoding the strength of our prior belief

that there is sparsity (e.g. neighbors are equal) in the underlying data. As λ goes towards zero, the

effect of the prior or penalty goes away, and the resulting model is not sparse (e.g. no geographic

fusion). As λ grows to infinity, the model will eventually become one that is “fully” sparse (e.g.

all coefficients are fused together). Thus, deciding what value of λ to use when reporting results

is an important choice. Appendix D discusses some further details, but I provide an overview of

the major approaches in this section with some recommendations for applied researchers.

First, a classical way of selecting λ is cross-validation. Described extensively elsewhere (e.g.

Hastie, Tibshirani, and Friedman 2009), this procedure splits the data into multiple parts, fits the

model with a wide range of λ on some of the parts and examines its performance on the held-out

parts. The λ that has the best performance—on some metric—on the held-out part is thus often

chosen as the λ. In practice, however, there is a general rule to select a λ somewhat larger than

what cross-validation suggests.

There are some potential issues with this framework for the cases of complex sparsity; first,

in some cases, the data structure is not amenable to cross-validation. In the examples I consider

below, I use complex sparsity to better estimate models with complicated fixed effects; however, as

many of these have small numbers of observations per fixed effect, cross-validation that is stratified

on the fixed effect seems inappropriate, as it leads to very few units left in the remaining model.

Second, it can be quite prohibitive in terms of time as one needs to refit the model for each sub-fold

in the most common K-fold validation and this cost increases dramatically as there are multiple

tuning parameters.
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A different approach that is deeply related to cross-validation is the large literature that relies

on various information criteria (e.g. AIC or BIC) to select a model. The core idea is straig-

htforward; we cannot simply evaluate the log-likelihood as a way of selecting models based on

λ as smaller λ will invariably have better fits—as they are less sparse—at the cost of having a

more complex model. We thus need to have a statistic that evaluates the model’s performance by

penalizing the fit by some measure of the complexity of the model. In the case of general linear

models, the commonly used AIC and BIC penalize based on the number of parameters in the

model, adjusted by some scaling factor. Much research has been devoted to understanding the

properties of these and related estimators in both the sparse and non-sparse case. Hui, Warton,

and Foster (2015) provides a clear discussion of the developments in this literature, with focus on

model selection with sparse underlying models. Gelman, Hwang, and Vehtari (2014) provide a

nice discussion in the Bayesian case.

Getting a measure of the model’s complexity (or its “degrees of freedom”) in the case of

sparse models is more challenging. Two seminal papers (Tibshirani et al. 2004; Zou, Hastie, and

Tibshirani 2007) proved that, for the linear model, an unbiased estimate of the degrees of freedom

using the vanilla LASSO is the number of non-zero coefficients. From this result, the standard

practice in the literature is to use this measure of the degrees of freedom for non-linear models

(e.g. Park and Hastie 2007). The justification usually appeals to approximate normality of the

objective function around the optimum; this justification would also work for non-linear models

in this paper by appealing to the Polya-Gamma data augmentation representation discussed in

Appendix C. Some researchers have proposed biased-corrected measures of the degrees of freedom

for the vanilla LASSO for non-linear models (Ninomiya and Kawano 2016) that could be used

instead.

The crucial development for this paper, however, is the result in Tibshirani and Taylor (2012)

where they derived an unbiased estimator of the degree of freedom, again assuming a linear model,

for the generalized LASSO discussed in the first section of this paper. While the exact formula is

outlined in their paper, it has a number of simple interpretations for common types of sparsity.

For example, if one is using temporal sparsity, the estimate of the degrees of freedom is the number

of groups of fused coefficients. If one is using functional sparsity, it is the number of “knots” in

the function. For categorical sparsity, it agrees with the measure conjectured in Gertheiss and

Tutz (2010) as the number of distinct fused groups. Future work is needed to create a corrected

estimator for non-linear models; however, again following existing practice, it seems reasonable to
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use their estimator of the degrees of freedom for non-linear models.

With that in hand, it is thus possible to vary λ over a grid and examine the evolution of

one’s preferred information criterion. This does require fitting over a range of values, like cross-

validation, but only requires one fit per model and gives the coefficients of interest (i.e. estimated

on the entire dataset) at the end. When doing this strategy, however, I suggest noting the λ

suggested by multiple information criteria to show the robustness of one’s results to the choice of

λ.

The above discussion is focused on the non-Bayesian paradigm. In the Bayesian case, the

question becomes what prior to give λ. While typically we want to give parameters weakly

informative priors, this is not always desirable in the sparse case. If one gives a weak prior that

does not grow with the data, then as the data grows, the prior will be dominated by the data and

the resulting model will lose its sparse properties. Thus, general practice is to encourage the prior

to grow with the data in some way. This allows the exact value of λ to adapt to the data, but it

will be “anchored” in some sense around a theoretically desirable values. Again, there is a large

literature on this, see Bühlmann and van de Geer (2011) for the canonical reference and Ratkovic

and Tingley (2017) for a recent application in political science along this vein. Following existing

research that suggests
√
N lnP in the vanilla case, I suggest that

√
N ln rank(D) is plausible for

the generalized case, although this needs further investigation.

Overall, therefore, I have outlined two strategies for tuning the strength of regularization.17

First, if one is relying on the non-Bayesian paradigm, then one should use either cross-validation

or an information criteria (AIC, BIC, etc.) to select the value of λ. However, an important

robustness check would be to show the evolution of the quantity of interest (e.g. the treatment

effect) over a range of λ while noting which points correspond to the optimal ones suggested by

different metrics. If the quantity of interest is robust to the choice of λ in plausible ranges, that

should give confidence in the conclusions from using complex sparsity. Second, if one is relying on

the fully Bayesian paradigm, one should anchor the prior mean of λ at
√
N ln rank(D).

17A third, albeit more non-standard, method is discussed in Appendix D. This approach puts λ into the EM
algorithm directly. The simplest, but conceptually odd, puts it as a parameter to be maximized in the M -Step,
i.e. finding the posterior mode of p(β, λ|y,X) instead of the usual p(β|λ,y,X). While used in some research, e.g.
Polson and Scott (2011b), Ratkovic and Tingley (2017), and Goplerud et al. (2018), it has some difficulties that
are discussed in the Appendix. Alternatively, one can put λ into the E-Step and target the correct p(β|y,X) at
the cost of needing to do a small number of one-dimensional numerical integrals to evaluate the moments of λ.
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6 Extension to Other Forms of Regularization

In the above discussion, I have used penalties that are defined by an absolute value penalty (`1-

norm), i.e. λ|βj |. However, as is widely known, this penalty suffer from a number of problems;

first, and most importantly, it severely biases (attenuates towards zero) the non-zero coefficients

that are recovered from the model. Ideally, we would have a form of regularization that achieves

some desirable properties known as the ‘oracle’ properties: Roughly, as the amount of data grows,

our estimator should (i) give non-zero values only to the true non-zero coefficients and (ii) be

unbiased for those non-zero coefficients.18 A large literature has tried to address the problems

with the LASSO in the vanilla case, Polson and Scott (2011a) provides a good overview. However,

for the more complex cases (e.g. temporal sparsity), almost all work in the ‘point estimation’ case

and most Bayesian analysis relies on the (standard) LASSO and thus inherits those undesirable

properties. The framework outlined in this paper allows for many modern types of regularization

to be applied to any complex sparsity thus immediately expanding the repertoire available to

social scientists. Many modern forms of regularization (sometimes known as global-local priors or

continuous sparse signals) can be cast in the following hierarchical form for some distribution g:

βj |τ2
j ∼ N(0, τ2

j ); τ2
j |λ ∼ g (9)

As outlined above, the LASSO sets g to be Exp(λ2/2). Following Polson and Scott (2011a),

these models are typically known as global-local shrinkage models as there are some shared pa-

rameters (λ - the ‘global’) that control the global level of sparsity, but each variable has its own

specific augmentation variable (τ2
j - the ‘local’) that controls whether it, in particular, is shrunk

towards zero. By carefully selecting the g function, i.e. how the local variable is specified, one can

create a huge array of models that have many different and desirable properties. For example,

if τ2
j is given a half-Cauchy prior, this generates the horseshoe penalty (Carvalho, Polson, and

Scott 2010). Importantly for inference, this global-local prior means that, conditional on the τ2
j ,

one is simply imposing a normal prior on the coefficients and thus can rely on standard forms of

inference where βj has a normal prior. For carefully chosen g, the conditional distribution of τ2
j |β

is also tractable. An extensive review can be found in Polson and Scott (2011a).

In the case of complex sparsity, the issue becomes somewhat more complex. In the case of

18The oracle property is phrased in terms of the vanilla LASSO, e.g. Zou (2006), as having property (i) and then
property (ii) as converging to the maximum likelihood estimator for the model estimated only on the truly non-zero
coefficients. As the analogue to the maximum likelihood estimator is trickier to conceptualize in the temporal and
complex case, the phrasing of (ii) above captures the key point—unbiasedness.
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rank(D) = K, as shown above, we can cast the LASSO-based sparsity as having independent

exponential distributions on τ2
k . By switching that g distribution to something else, we directly

generalize that type of complex sparsity to other global-local priors. In the other cases, the same

issue as above arises—the marginal distributions on the τ2
k no longer have a clean, independent

form. However, that may not, in fact, impact our ability to engage inference as long as we specify

the joint prior appropriately:

p(β, {τ2
k}Kk=1) ∝ exp

(
−β

TDT τ−1Dβ

2

) K∏
k=1

g(τ2
k )√
τ2
k

(10)

This is prior is not normalized, and thus calculating and evaluating the normalizing constants

insofar as they depend on other hyper-parameters may be challenging, but sampling from this

prior—and thus the posterior on β and τ2
k should be tractable inasmuch as Bayesian inference on

the vanilla case is tractable conditional on those hyper-parameters.

In the empirical applications, I focus on one specific and highly common extension in the

non-Bayesian case. In attempting to improve the vanilla LASSO, Zou (2006) defines the ‘adap-

tive LASSO’ as follows: The penalty for each variable is scaled by some weight wγj , i.e. p(βj) ∝

exp(−λ/wγj |βj |). In that paper, wj is defined as ‘some
√
N -consistent estimator’ (e.g. the maxi-

mum likelihood estimate). The idea is that the MLE for the entire model is not a terrible guess for

the value and thus if the MLE is small, the true value of the coefficient should be small so a small

MLE results in a big shrinkage. Zou (2006) shows that, assuming λ grows at the appropriate rate,

this estimator has the oracle property. A large, but rather disconnected, literature has shown that

various types of complex sparsity can also have the oracle property given similarly straightforward

adaptive weights.19 The cost of the adaptive LASSO is that it adds an additional regularization

term (γ) is rather important for small-sample performance and must be calibrated via the same

set of strategies noted above for tuning λ; the most common default is to set γ = 1. In terms of

the global-local representation of the (vanilla) Bayesian adaptive LASSO,

βk ∼ N(0, τ2
k ); τ2

k ∼ Exp

(
λ2

2w2γ
k

)
(11)

As noted above and discussed in detail in Appendix E, this can be adapted to the generalized

case for arbitrary D. Inference on λ proceeds analogously to the standard LASSO case, although

weighted by the adaptive weights, but inference on γ is tricky for a general D. Thus, one can

19Most proof strategies target a specific type of sparsity, e.g. temporal, and thus consulting the canonical papers
typical comes with an oracle result for that case. Working on a general proof for oracle property for the generalized
LASSO is an interesting case for future research.
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simply assume it to be fixed at one, as is standard, or rely on more complicated methods to sample

γ to address the unknown normalizing constant that depends on this parameter.

7 Incorporating Random Effects

Another key tool in the social scientist’s arsenal are random effects, i.e. some shared ‘shock’ or

effect between groups. That is each observation i has some vector of covariates and/or membership

dummy variables zi that is multiplied by a vector of coefficients α that is given a normal prior—

that is, generally, not sparsified.20 These can also be added to the model; as this has been discussed

more extensively elsewhere (Goplerud 2018a), I defer discussion of this to those papers. In short,

it requires a mean-field variational approximation to the E-Step of the EM algorithm; it adds no

complication to the Gibbs Sampler.

8 Applying Complex Sparsity to Fixed Effects

I focus on one important application of complex sparsity—estimating fixed effects in a more flexible

way. Consider the scenario outlined at the beginning of the paper: A recent influential paper by

Trounstine 2016 examines how residential segregation in American cities affects the provision of

public goods and political outcomes. The paper engages in a number of different analyses that

employ fixed effects that I re-analyze here in the context of complex sparsity.

The first analysis (Table 1; Trounstine 2016, p. 713) gathered extensive political data on 25

cities across a number of years (91 observations in total) to analyze how residential segregation

affects the racial divide at elections. The outcome variable is the largest pairwise difference between

racial groups (white vs black; white vs Latino; black vs. Latino) for the winning candidate at the

relevant mayoral election. The main explanatory variable is residential segregation measured by

Theil’s H index; roughly, it “measures the degree to which the diversity in each neighborhood

differs from the diversity of the city as a whole” (Trounstine 2016, p. 711). Additional controls

are included; these are outlined in Appendix F and described at length in the original paper. To

control for possible unobserved heterogeneity, the researcher has a number of possible strategies

at their disposal of which fixed effects is perhaps the most popular. Trounstine 2016 follows in

this tradition and includes two-way fixed effects. One, for year, captures temporal variation in

20There is some work on inducing sparsity in the random effects directly (Kinney and Dunson 2007; Bondell,
Krishna, and Ghosh 2010; Ibrahim et al. 2011); as this is not the key point of this project, I do not explore that in
detail but this could be added to the model without much additional difficulty.
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the data. The other is designed to capture spatial heterogeneity, i.e. differences between cities.

However, unlike the usual approach, the author includes region (not city) fixed effects and city

random effects. The author’s decision to note include city fixed effects is not elaborated in detail

in the main text, but presumably is because four cities occur for only one year and there is some

perfect collinearity with those singleton cities as other variables in the analysis (e.g. the only

election for Austin is also the only election for the year 2009).

While this was a reasonable choice by the author, it is rather sensitive to a number of choices.

First, if one estimates the random effects via REML (the default in lmer in R; Bates et al. 2015),

the main coefficient is no longer statistically significant at the 0.05 level (p-value 0.064)—whereas

it is significant if one uses maximum likelihood (the default option in the STATA replication code).

Second, and more importantly, if one actually examines the random effects—estimated by either

method, we see that, in fact, they are set to zero as the variance of the random effects themselves

is effectively zero. Thus, there is effectively no control for city-level heterogeneity in the model as

a model estimated with OLS, excluding the random effects, has identical point estimates to the

random effects model.

Most importantly, it is actually possible to use fixed effects for cities as long as we are willing

to accept a smaller number of observations: By excluding those four observations above, there is

sufficient variation in enough cities to estimate all of the coefficients in the original model. This

specification is the most causally robust—it leverages within city variation to estimate the effect

of residential segregation. However, given the small number of observations, we have an issue of

power: Running this model gives a much larger point estimate (3.841 vs 0.932), but the standard

error is about ten times as large (p-value of 0.40). This leaves an open question of the robustness

of the result in the original paper. The existing specification provides effectively no control for

city level heterogeneity but a result that does control for this in the standard way is significant, if

seemingly highly under-powered.

Complex sparsity provides a way to bridge the gap between the author’s intention—control

for unobserved heterogeneity at the city level—and the practicalities of the data. The intuition is

straightforward: Imagine it was known that certain cites shared the same unobserved heteroge-

neity, i.e. they had identical fixed effects. In that case, we would simply want to include dummies

for those groups to control for the unobserved heterogeneity. Insofar as those groups had variation

on all of the variables of interest, then the model is identified. As these groups contains multiple

cities and thus more variation, this will have more power than the simple city-fixed effects appro-
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ach. It also will allow for city-level heterogeneity to remain in the model, unlike in the random

effects case.

Of course, the major snag in this thought experiment is that the groups are unknown. Thus,

one plausible strategy is to estimate them. One existing approach (“grouped fixed effects”; Bon-

homme and Manresa 2015) does this by, effectively, clustering the residuals of a linear regression

using k-means and using that to assign group membership by iterating between k-means and re-

gressions including those groups. The authors show that under a variety of regularity conditions,

their procedure will asymptotically recover the correct groups and point estimates on the main

coefficients of interest. This procedure, however, does not clearly correspond to a probabilistic

model and thus many extensions outlined in this paper, such as extensions to non-linear models

as well as valid measures of uncertainty, are difficult to include. Further, the types of groups per-

mitted by that model are somewhat limited, whereas complex sparsity easily allows, for example,

for groupings that respect network structure (e.g. geography), different groupings across different

variables, etc.

The other major approach comes from frequentist applications of a specific application of

complex sparsity (Categorical Sparsity). Gertheiss and Tutz (2010), but see Bondell and Reich

(2009) for some earlier work on the ANOVA case, derived an estimator corresponding to the

posterior mode of a linear model with categorical sparsity on some variable of interest (city, in our

example). At the optimum, this will fuse together many levels of state-year into groups exactly

as in the group-fixed effects framework. They rely on the adaptive LASSO penalty as discussed

above, with a modification to account for the different sizes of the groups in the data. They show,

and Chen (2015) shows in the logistic case, that under the usual adaptive LASSO conditions—with

some additional regularity conditions concerning the non-trivial asymptotic size of each group–

their model has the oracle property for recovering the groups and unbiased estimation of the

(true) non-zero differences between groups. The work in this paradigm is frequentist, and thus

this paper appears to be the first generalization of the generalized LASSO into the Bayesian

framework, although other approaches for collapsing categorical predictors in a fully Bayesian

framework remains an active area of research (Pauger and Wagner 2018).

One can think of the complex sparsity approach as a bridge between the fixed effects and

random effects traditions (Tutz and Oelker 2017); while the usual random effects tradition places a

normal prior on the city effects, complex sparsity places a prior that allows for dependence between

city dummies and induces grouping in the posterior mode. This interpretation also explains why
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we can include variables that are perfectly collinear with city in the analysis (as is possible in the

classical random effects tradition), but also gives us the power of the interpretation of the fixed

effects as ‘de-meaning’ asymptotically as the asymptotic behavior of the oracle complex sparsity

is not for each fixed effect to converge to unique value for each city but rather that the true

groups emerge and thus the results can be interpreted in the usual “within” fixed-effects context

conditional on the group. Thus, in the specification that includes all cities (including those only

observed for a single year) or variables that are perfectly correlated with city (e.g. non-partisan

primary), the model is only identified by virtue of the prior, as in the case for random effects.

However, unlike random effects, the asymptotic behavior—assuming λ grows at the appropriate

rate—is to identify a model that is identified.

For now, I focus on the frequentist approach to illustrate the properties of complex sparsity. To

begin, I re-specified their model using the adaptive LASSO.21 I considered two possible patterns of

sparsity; first, I use categorical sparsity to fuse together any possible combinations of city effects.

I proceed as follows: I vary λ from very small (little fusion into groups) to large (all city-effects

fused into one group) and note which λ would be selected by the AIC and BIC criteria discussed

above. Following existing practice, I re-fit the model on the groups that are selected using ordinary

least squares; this is the “hybrid” approach of Tibshirani et al. 2004, see also relatively common

practice in applied research (e.g. Gertheiss and Tutz 2010; Hui, Warton, and Foster 2015) and has

some theoretical underpinning in the case of the vanilla LASSO (e.g. Belloni and Chernozhukov

2013). A benefit of this approach is that we can easily get standard errors (robust or otherwise)

from this procedure.22

To begin, Figure 1 shows how complex sparsity affects the structure of the unobserved hete-

rogeneity. The left panel shows the estimated coefficients using complex sparsity as λ varies; we

see that as λ increases, more and more of the city effects are fused together until, eventually, all

are set to zero. The right panel shows the number of groups as the regularization strength varies,

calculated by assuming that all city effects that are closer than 0.0001 should be fused together.

Both figures have a vertical red line to indicate the optimal model as selected by the AIC and

BIC—in this case, the two measures agree.

The primary quantity of interest in this analysis, however, is the effect of residential segregation.

21I fix γ = 1; note that even though the model is un-identified, only the differences between the city coefficients
matters for the adaptive weights; this quantity is identified. I put a diffuse ridge prior on the variables to stabilize
the adaptive weights.

22An important future extension would adapt the sandwich estimator from Zou (2006) to the complex sparsity
case. This is likely possible, see Gertheiss and Tutz (2010) and Chen (2015), who derive the asymptotic normality
results for categorical sparsity.
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Figure 1: Effect of Complex Sparsity on City-Level Heterogeneity
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Figure 2 shows the results for that variable. The left panel shows in a dashed line the point

estimates from the model with the adaptive penalty. The solid line with dots indicates the point

estimates from the refit model, i.e. linear regression run when the groups are assumed known (i.e.

when the coefficients are closer than 0.0001). We see that they are fairly close suggesting that the

attention from using the adaptive LASSO is rather small in this instance. The right panel adds

confidence intervals to the refit model to examine the statistical significance of this refit model.

We see that, for almost all values of λ, there is a statistically significant effect as soon as we impose

a small amount of heterogeneity to structure the city-specific effects. The dashed line indicates

the original point estimates in Trounstine 2016 and we see that our point estimate is larger than

the results in the original paper, although less larger than in the pure city-fixed effects case. The

groups between the cities allows us to gain efficiency, however, as the result is clearly statistically

significant.23

Overall, therefore, complex sparsity allows us to salvage the initial results of Trounstine 2016 in

a more causally robust way; rather than believing the reported analysis that does nothing to control

for city-level heterogeneity or finding a null effect by an under-powered analysis that exploits only

within-city variation, complex sparsity lets us say, if we are willing to make an assumption that

23The results here are calculated using regular standard errors, as in Trounstine 2016. Calculations with clustered
standard errors on either city or group return a similar result; indeed, they are in fact smaller than the regular
standard errors.
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Figure 2: Effect of Complex Sparsity on Segregation Index

(a) Penalized versus Refit Coefficient Path
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(b) Refit Path with Standard Errors
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there is some underlying grouping of the heterogeneity across cities, we can leverage that to gain

more power when drawing inferences. Indeed, as we see that for most levels of sparsity that are

imposed, i.e. the strength of our belief that there is grouping between cities, we find a significant

effect for residential segregation on the racial divide in mayoral elections. Thus, in cases where

fixed effects strategies are infeasible or underpowered, and random effects fail to adequately control

for the underlying heterogeneity, complex sparsity provides a path forwards.

9 Using Complex Sparsity to Estimate Time Trends

Another way to apply complex sparsity to the question of fixed effects involves the question of time

trends. A well-known threat to confounding for fixed effects or difference-in-differences designs is

differential time-trends between the units. If we knew that the time-varying confounding had a

linear trend with respect to time, one could include unit-specific time-trends (of some order) to

address this. However, this comes a heavy cost: It adds a huge number of parameters to the model

and, for models with fairly short time panels, may severely under-power the resulting estimates.

Further, fitting these models can be computationally intensive as one is estimating two-times the

number of units parameters as nuisance fixed effects.

For a concrete application, consider the second series of results in Trounstine 2016. The
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previous analysis was a small-data context where high-quality data existed on political outcomes;

the second analysis uses a large-n framework where data on approximately 2,000 cites surveyed

at six time periods (1982 to 2007, every five years) giving us around 14,000 observations. In

this analysis, Trounstine 2016 examines the role of segregation on spending on public goods to

compliment the analysis of political outcomes. For this analysis, the outcome variable is the

“direct general expenditure” per capita. To address unobserved confounding, the author employs

city-level fixed effects to leverage within-city variation to more credibly estimate the causal effect.

However, the analysis does not take into account the role of time, as there are no controls for year.

As spending may have secularly increased, or decreased, over time, and this may be correlated

with variable of interest, this poses a threat to identification that is worth carefully examining.

To illustrate the potential for concern, Table 2 reports the main effects using a number of

specifications that control for time. First, Model 1 is the result in (Trounstine 2016, p. 715).

Second, Model 2 is the result controlling for time linearly and Model 3 is the result controlling for

time using dummy variables for each year.

Table 2: Controlling for Time

Statistic (1) (2) (3) (4) (5) (6)
Coefficient -1.131 -0.460 -0.560 -0.637 -0.204 -0.471
Standard Error 0.172 0.178 0.179 0.330 0.183 0.115
t-stat -6.585 -2.585 -3.125 -1.931 -1.114 -4.082

Note: Model 1 replicates the results in Trounstine (2016, p. 715), Table 2. Model 2 includes a linear control for
year; Model 3 includes year fixed effects. Model 4 includes city-specific time trends. Model 5 includes state-specific
time trends. Model 6 is the AIC/BIC selected model using geographic sparisty described in the main text. For
comparision across models, all include regular, i.e. non-robust, standard errors. The standard error on residential
segregation increases if robust standard errors are used for Models 1-3.

We see that time seems to matter in the aggregate; the main effects are noticeably diminished,

although still significant and non-trivial in magnitude. Yet, this robustness test assume thats

time has the same impact across all units; if it were the case that certain influential units had

differential time-trends that were correlated with their trends in segregation, this may further

affect the robustness of the results. One could test this in a number of ways; first, the most robust

would be to include city-specific time trends at the cost of a large number of degrees of freedom

(Model 4 in Table 2). One could try a more limited test of allowing state-specific time trends

(Model 5 in Table 2). We see that the point estimates are broadly comparable (albeit smaller

now that time is included), but the standard errors have grown enormously—even using regular

and not clustered standard errors that, in fact, cannot be computed using standard software (even

after de-meaning) because of the dimensionality of the dataset. Thus, it is hard to know whether
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the null result that accompanies these point estimates is due to actual confounding by time or a

simply underpowered model.

Again, I turn to complex sparsity to help address the issue. Using a very similar procedure to

above, I run a model that includes (un-regularized) fixed effects for every city and the additional

controls included in the original paper.24 To deal with the time-varying confounding, however, I

rely on geographic sparsity. Given that there are over 2,000 cites, it is computationally infeasible

on a standard computer to allow every city to be equal to every other; that would imply over 1.9

million rows in D! Thus, I use the my theoretical knowledge to assume that it is plausible that

cities in a state may share a common time trend. The fully sparse version of this model (constant

time trends inside a state) is reported as Model 5 in Table 2.25

Figure 3 shows, analogously to Figure 2, the path of the coefficient on segregation as λ varies.

The dashed line includes the original point estimates from using city-specific time-trends (Model

4). We see that while the point estimate is smaller, the standard errors are also smaller and thus

the effect remains significant. The model selected by the AIC and BIC (that again agree) contains

about 300 distinct groups that each have their own random slope for time. While more than the

fifty-some parameters added if we assumed the time trend was constant within states, this is also

many fewer than the 2,000 city-specific slopes that the naive fixed effects approach would include.

Figure 3: City-Specific Time Trends with Geographic Sparsity
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24See Appendix F for details on the controls.
25I exclude states with only one city (Alaska, Hawaii, and Washington DC) for the sake of simplicity. Those

cities could be fused to neighboring states, perhaps. I also explicitly exclude the cities with only one election as
these cannot contribute to estimated coefficients when city fixed-effects are included.
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10 Conclusion

This paper began by noting that many of functional form assumptions in our models can be thought

of as encoding particular types of sparsity. When one thinks that variables are stable across time

and space, this is temporal and geographic sparsity. When one thinks that a variable has a linear

effect, this is ‘functional’ sparsity. And so on. The goal of this paper is to show that extensions

of common methods in machine learning are designed exactly to address these problems that are

endemic in social sciences. By deriving a framework for stable, fast, and tractable estimation of a

vast array of complex types of sparsity, this paper makes testing those assumptions within reach

of the applied researcher.

Rather than having to rely on specialized inference procedures that are not suited for general

social scientific research,26 I derived and presented a general framework for estimating complex

types of sparsity that is fast and works on many major dependent variables encountered in typical

research (linear, binary, multinomial, and negative binomial). The key innovation was to cast the

complex sparsity in a Bayesian fashion and then note that the EM algorithm allows us to estimate

this in a rapid and stable way—even for non-linear outcomes—as well as adding other common

features like random effects. Further, to get a model that has good performance, I extend the

existing work on complex sparsity to enable the use of other sparsity-inducing penalties that is

known to have much better theoretical properties than the LASSO in a general case. Thus, the

framework outlined here would improve existing applications of complex sparsity; examining and

demonstrating that is a fruitful area for future research.

I then applied this framework to an important recent paper (Trounstine 2016) in American

politics that examines the role of residential segregation on public goods provisions and political

outcomes. I find that if one applied a number of standard “robustness tests” to the author’s original

findings, the results go away—that is, become insignificant. In the case of political outcomes, a

stricter test using city-specific random effects (vs. the existing model that only controls for region-

level heterogeneity) increases the size of the coefficient but explodes the standard error. In the case

of public goods, controlling for time in the most robust way (including city or state specific linear

time trends) also renders the main effect insignificant and noticeably decreases its magnitude.

Given that assuming some structure across cities is reasonable, this suggests that the results are

robust to possible unobserved confounding, although tests without using complex sparsity would

26For example, the most common existing packages either assume a single variable, that all variables are sparsified
in the same way, or make one painstakingly enter the types of sparsity via specifying D. They are also not able to
estimate non-linear models in the generalized case.
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have suggested otherwise.

It is worth stressing that the patterns of heterogeneity uncovered by complex sparsity were

not something that the existing literature had strong theoretical guidance behind. It would be

hard to justify and defend to oneself and others that specific groups of cities should or shouldn’t

be clustered together for fixed effects or linear time trends. Indeed, whether there should be any

clustering at all is open to debate and can be determined by examining criteria like the AIC or

BIC. Complex sparsity allows researchers to address that question by saying that if we are willing

to put some belief on there being structure in the heterogeneity (i.e. groups of units with similar

effects in the example in this paper), we have a principled procedure to identify those groups

without resorting to many of the issues associated with “p-hacking”. By showing the results

across a range of possibility strengths of prior belief on the structure of the groups, as well as

noting which level is best supported by the data using an information criterion-based approach,

researchers can transparently show to readers how much prior belief in sparsity matters for their

conclusions.

Thus, the power of this framework is that it allows researchers to use theoretical assumptions

or knowledge—that usually comes at the level of expecting certain types of geographic or temporal

relationships between variable—without pre-judging exactly where, when, and how the heteroge-

neity should appear. This is the power of the entire enterprise of sparsity in the traditional sense;

this paper gives the tools for leveraging that enterprise to tackling the core types of heterogeneity

that appear in social scientific questions.
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A Details on the Generalized LASSO Prior

This appendix focuses on deriving some results related to the prior corresponding to the generalized

LASSO penalty. It proves that the normalizing constant in terms of λ can be drawn out as in the

main text and discusses some issues that arise when employing other types of sparsity.

To begin, as noted above, the un-normalized density for the marginal generalized LASSO

Bayesian prior can be written as follows:

p(β) = c(λ,D) exp(−λ||Dβ||1) (12)

For fully Bayesian inference on λ, it is important to know whether we can characterize the

normalizing constant in terms of two separate terms c(λ,D) = k(λ)wD. If so, then it is possible

to accurately estimate a fully Bayesian model or EM algorithm where λ is a parameter. In doing

so, some interesting facts about the generalized LASSO are derived. I start by decomposing D—

unlike Arnold and Tibshirani (2016) who rely on a QR decomposition, I use the singular value

decomposition, noting that it can be written as follows, with the dimensionality of each matrix

indicated in subscript. Assume the dimensionality of D is m. Recall that U and V are orthogonal

and σ is a full-rank diagonal matrix. Further, note that p ≥ m.

DK×p = UK×K

 σm×m 0m×p−m

0K−m×m 0K−m×p−m


K×p

[Vp×p]
T (13)

We can simplify this further in some crucial ways; first, define Ũ as the first m columns of U .

In the same vein as a ‘reduced rank’ QR factorization, we can simplify the presentation of D.

DK×p = ŨK×m [σm×m, 0m×p−m] [Vp×p]
T (14)

Turning back to the prior, we define β̃ = V Tβ. V is full rank and orthogonal so we can apply

the change of variables formula. Note, this would be equivalent to re-specifying the model with a

new data matrix X̃ = XV . After doing this, the prior would have the following density:

p(β̃) = c(λ,D) exp(−λ||[Ũσ, 0]β̃||) (15)

This leads to the interesting observation that, in fact, only the first m elements of β̃ have

any effect on the penalty. Thus, the generalized sparsity penalty is operating on effectively m
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variables—even if the dimensionality of β is p. To see this further, split β̃ into two groups; group

1, β̃1, has the first m elements and group 2, β̃2, has the remaining p−m elements. We can write

the joint prior as follows.

p(β̃1, β̃2) = c(λ,D) exp(−λ||Ũσβ̃1||) (16)

Thus, we can note that the prior can be written as follows: There is a generalized LASSO prior

on β̃1 but a flat prior on β̃2. Thus, in the β̃ space, we have a prior that is, in fact, improper on

p−m elements of β̃. For the proper prior, however, we can find its normalizing constant in terms

of λ and some value wD that only depends on D. That is,

p(β̃1) = λmwD exp(−λ||Ũσβ̃1||) (17)

From this, we can reconstruct the joint prior again, noting that proportional to reflects the

fact that there is a flat prior for p−m elements. We can change back into the β space to get the

result in the main text.

p(β) ∝ λmwD exp(−λ||Dβ||) (18)

Some remarks: As noted in the main text, I write the conditional prior as below where +

denotes the pseudo-inverse.

β|{τ2
k} ∼ N

(
0,
(
DT τ−1D

)+)
(19)

Given the results above, we can put the point more sharply. If we work in the space of β̃, then

we have a conditional prior for β̃1 that is always well-defined with a positive-definite variance:

β̃1|{τ2
k} ∼ N

(
0, (D̃T τD̃)−1

)
(20)

Second, to get the representation in terms of the pseudo-inverse, we can define β̌ ∼ N(0,S−1)

where S−1 is the diagonal matrix formed by the reciprocal of the non-zero eigenvalues of the
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eigen-decomposition of DT τ−1D. We can thus cast the prior as follows:

β̌|{τ2
k} ∼ N(0m×1,S

−1) (21a)

β = QT

 I

0

 β̌ (21b)

Thus, if we take a full rank β̌ generated from the appropriate multivariate normal characterized

by the eigen-values of the lower dimensional space, and then project it into a larger k-dimensional

space, we recover a density that can be expressed as in the main text: To note, this density can

be written as follows, noting the restrictions on the support of β

p(β) = det∗(2πDT τD)1/2 exp
(
−1/2βTDτ−1D

)
(22)

This has important implications for the joint density: Recall that I proposed the following

joint prior for the Bayesian generalized LASSO:

p(β, {τ2
k}) ∝ λm+kdet(2πτ )−1/2 exp(−λ2/2

∑
τ2
k ) exp

(
−1/2βTDτ−1D

)
(23)

Integrating away β, over the space on which it is defined, gives the following marginal density

for {τ2
k}:

p({τ2
k}) ∝ det∗(2πDT τ−1D)−1/2det∗(2πτ )−1/2 exp(−λ2/2

∑
k

τ2
k )λm+k (24)

Some remarks are in order. First, this density can in only special circumstances be written as

independent exponential distributions as in the vanilla case. Specifically, only when rank(D) = K.

In this case, we note that det∗(DT τ−1D) = det∗(τ−1DDT ). Since both τ−1 and DDT are

invertible, this means that det∗(DT τ−1D) = det(DDT )
∏
k(1/τ2

k )−1. Thus, we can write the

marginal density in this case as follows; a product of independent exponential distributions.

p({τ2
k}) ∝

∏
k

λ2/2 exp(−λ2/2τ2
k ) (25)

In the case of the categorical sparsity and other case where rank(D) = p, we have a proper prior

on all elements of β. This can also be guaranteed by adding a vanilla sparsity to all elements of
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β regardless of the pre-existing D. By a similar logic, the prior on β can always be made proper

by adding a (proper) normal prior to all elements in addition to the complex sparsity. This,

however, has a somewhat undesirable property insofar as it pulls all elements (slightly) towards

zero which may be in tension with the desired type of sparsity (e.g. temporal or functional). One

could address this by adding the diffuse normal prior to β̃2. Working through the math gives the

following (proper) prior; assume that p(β̃2) ∼ N(0,Σ0,β).

p(β) = λmwD,Σ0,β
det(2πΣ0,β)−1/2 exp

−λ||Dβ|| − 1/2βV

 0 0

0 Σ−1
0,β

V Tβ

 (26)

As Σ0,β tends to infinity, i.e. becomes infinitely diffuse, the limiting case is the one noted in

the main text.

Finally, it is worth also considering the cases where the posterior on β is well defined. First, it is

obvious to note that if either the prior is proper orX is full rank, then the posterior is proper. Con-

sidering the conditional posterior, its precision can be expressed as follows.
(
XTX +DT τ−1D

)
.

Does this invert? In the case of either X or D being full column rank, it does. More generally, if X

D

 is full column rank, then it does. For the cases considered above, many types of complex

sparsity involve constructing X such that the relevant (penalized) columns have full rank, e.g.

creating a ‘one hot’ structure. More generally, Ali and Tibshirani (2018) outline cases in which

the (frequentist) generalized LASSO is unique; future work will examine whether it can be proved

in those cases that for an arbitrary X, the posterior is proper. It is also worth noting that adding

a diffuse ridge prior to non-penalized elements in addition to the diffuse prior on the penalized

elements (e.g. via Σ0,β) can always guarantee a proper posterior as it gives a fully proper prior

to all elements of β—penalized or not.

B Details of the Other Forms of LASSO

B.1 Specific Generalized LASSOs

As noted in the main text, the functional, geographic, and categorical LASSO are particular

instantiations of the generalized LASSO. The specific forms are described below:

• Vanilla LASSO: In this case, D = I.
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• Fused LASSO: As outlined above, this consists of a matrix that has the following shape.

D =



1 −1 0 0 0

0 1 −1 0 0

0 0 1 −1 0

· · · · · · · · · · · · · · ·

0 0 0 1 −1


More formally, for each t ≤ T −1, there should be one row of D that has a ‘1’ in the column

position corresponding to βj,t and a ‘-1’ to the βj,t+1. Permuting the rows to have the

structure above, i.e. ordering βj from t = 1 to T , gives
∑
k dkd

T
k /τ

2
k a tridiagonal structure.

• Functional: The exact formula for a penalty of some polynomial order k is as follows (Tibs-

hirani 2014). For some βj,t where t ≤ T − k − 1, create a row of D where the columns

corresponding to the elements βj,s s ∈ {t, · · · , t+ k + 1} have the following values:

(−1)s−t
(
k + 1

s− t

)

Put another way, for some order k, one takes the relevant coefficients from a binomial

expansion and places them starting from position t to t+ k + 1 with alternating signs. The

temporal LASSO can be thought of as a ‘0-order’ polynomial on the values—i.e. no penalty

if there is no change—as it produces a piecewise constant function. For clarity, the first two

rows for k ∈ {1, 2, 3} are shown below assuming βj is ordered from t = 1 to T . Thus, note

that if the time series is length T , the largest polynomial that can be estimated is T − k− 1.

1. k = 1:

D =

 1 −2 1 0 0

0 1 −2 1 0


2. k = 2:

D =

 1 −3 3 −1 0

0 1 −3 3 −1


3. k = 3:

D =

 1 −4 6 −4 1 0

0 1 −4 6 −4 1
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• Geographic: For each geographic unit s, assume that its neighbors are denoted by ∂s. We

create one restriction for each neighbor such that the column corresponding to βj,s is given

a ‘1’ and the column for each neighbor s′ ∈ ∂s is given a ‘1’. It is thus the temporal LASSO

penalty for all neighboring nodes. It is almost certain in this case that D has more rows

than columns and, also, is not full column rank. However, given the limited nature of the

geographic dependencies, it is almost surely possible to re-arrange
∑
k dkd

T
k /τ

2
k to be a

banded matrix with a much smaller band than the number of columns of D. As Rue (2001)

and Bhattacharya, Chakraborty, and Mallick (2016) show, this allows for fast inference.

• Categorical: We have some indicator variable βj with C levels. We create a zero-one indica-

tor for all levels C, i.e. with no baseline. We thus structure D to impose a temporal LASSO

(‘1’, ‘-1’) penalty between all unique pairs of levels. This leads to C(C − 1)/2 restrictions.

As noted above, any of these can be mixed with group or vanilla penalties. For example, one

can create a categorical sparse LASSO by mixing a vanilla LASSO penalty with the categorical

restrictions. This would encourage all levels to both equal to each other and equal to zero. The

levels that ‘remained’ therefore would be clustered (i.e. sharing a small number of common values)

as well as mostly being sparse (i.e. most levels being zero). In general, adding a vanilla penalty

involves appending an identity matrix I with the dimensionality of βj to the bottom of D.

Adding in the group LASSO requires more conceptual work insofar as it is easy to write the

penalty on the augmented scale but it cannot be simply added toD directly. Assume we wanted to

add a group penalty (Yuan and Lin 2006) to some generalized LASSO penalty. Following Kyung

et al. (2010), it has a Bayesian representation, where pj represents the dimensionality of βj :

p(βj) ∝ exp
(
−λ1||Dβj ||1 − λ2

√
βTj Fβj

)
(27a)

βj ∼ N

(
0,
∑
k

τ2
kdkd

T
k + ξgF

−1

)
; τ2

k ∼iid Exp(λ2
1/2); ξg ∼ Γ([pj + 1]/2, λ2

2/2) (27b)

This nicely illustrates the fundamental difference between the group and generalized LASSO.

There is no dkd
T
k such that we get, say, the identity matrix.27 Further, even if we have the vanilla

LASSO, we have a diagonal matrix with independent τ2
k governing each element whereas the group

LASSO has a single augmentation variable (ξ2
g) governing the entire matrix.

27For a simple proof, dkd
T
k gives us a matrix where each ij is [dk]i[dk]j . The identity matrix requires that all

diagonal elements be ‘1’ and all off diagonal elements be ‘0’. Outside of the degenerate case where each group is
size one (and we recover the vanilla LASSO), we see that this is not possible.
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Further extensions on the group LASSO, e.g. the temporal group LASSO, are also possible

to mix with the generalized LASSO by noting that we simply need to combine the kernels of two

multivariate normals. As that is not the focus of the paper, I do not derive that proof here, but

it is roughly analogous to the derivation of the temporal sparse LASSO.

B.2 Banded Generalized LASSO

Inference for a generalized LASSO with arbitrary D can be conducted in two ways. First, one

can simply invert the (weighted) outer product of the data plus the precision matrix each time.

To speed this up, I note a number of important ‘tricks’.

First, one should think of D as being specific to each variable and thus we can optimize them

coordinate-wise. That is, if we are simply doing a vanilla LASSO, it is almost surely faster to

cycle through the coordinates one-at-a-time versus doing a full inversion especially in the case

where P >> N . This thus implies that if we are doing, say, a temporal LASSO for each variable,

we need to do a temporal LASSO update for each coordinate versus stacking together the entire

matrix.

To illustrate this, consider an example from text-as-data where we tried to predict party based

on 6,000 words across 50 Congresses. That would be a very large (300,000) matrix to invert to

do all of the updates directly and even the speedup techniques by Bhattacharya, Chakraborty,

and Mallick (2016) and Johndrow, Orenstein, and Bhattacharya (2018) were employed, would still

likely run into severe difficulty. By contrast, if we focus on doing each word sequentially, we have

merely a 50 by 50 matrix to invert that we need to do 6,000 times. The downside of the cyclical

approach, however, is that the residualization required for the update itself requires some matrix

multiplications; however, if that proves too costly, other approximate strategies may be employed.

Second, it is likely possible to do even better for a specific Dj than “naive” inversion insofar as

they are likely banded. The banded structure is automatic in the case of functional and temporal

sparsity and appears in many cases of geographic sparsity. As an example, consider the map of

the counties in the United States. I extract the corresponding to neighbors for each county—with

each county considered to be its own neighbor and plot the adjacency matrix using the ordering

of the counties provided in the shapefile. We see that this matrix looks very complicated and not

amenable to ‘simple’ tricks for fast inversion.

However, following Rue (2001), there is a large literature on how to permute the rows and co-

lumns of a sparse matrix to create a banded matrix with the smallest (or much smaller) bandwidth.
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Using a variety of algorithms, one can re-order the counties to get the following adjacency matrix.

This is identical to the one shown previously—I simply reordered the counties while keeping all

links. We see that this has a bandwidth of 3114 (the number of counties) versus 958 below.

Figure 4: US County Adjacency Matrix

(a) Untransformed Graph
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The smaller bandwidth is highly important because there are specialized routines for computing

the Cholesky decomposition of a sparse banded matrix that scale on the order of mb2 where b is the

bandwidth and m is the number of nodes. This is extremely useful for evaluating quantities that

require the inverse such as the log-posterior. Thus, I would always suggest for a large D and the

corresponding sparse data matrix, permuting the matrix to have a small bandwidth—permuting

the columns of the data to match—and then using that in one’s analysis.
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C Details of Inference

C.1 Linear Regression

For linear regression, we need to incorporate the error variance σ2 into the model. Assume the

following generative framework following Park and Casella (2008):

y|β, σ2 ∼ N
(
Xβ, σ2IN

)
(28a)

p(β|λ2, σ2) ∝ wDλ
m/σm exp

(
−λ
σ
||Dβ||1

)
(28b)

The log-posterior, including a prior of p0(σ2) on σ2 and p0(λ2) on λ2 can be written as follows,

up to constant only involving D:

− N

2
ln(2πσ2)− ||y −Xβ||

2
2

2σ2
+m ln(λ)−m/2 ln(σ2)− λ

σ
||Dβ||1 + ln p0(σ2) + ln p0(λ2) (29)

With data augmentation, we can write the prior on β, τ |σ2 as follows; this follows the advice

in Park and Casella (2008) to have the prior depend on σ2, with p(τ ) following the same marginal

as in Appendix A.

p(β, τ |λ, σ2) ∝ σ−mλK+mdet(τ )−1/2 exp(
∑
k

−λ2/2τ2
k ) exp

(
−β

TDT τ−1Dβ

2σ2

)
(30)

In the case where D is rank K, this simplifies to the familiar form:

β|τ ,σ2 ∼ N(0, σ2[DT τD]+); τ2
k ∼ Exp(λ2/2) (31)

Recalling the results above, I note that DT τ−1D may not have full rank and thus could be

re-written in terms of the rotated subspace. The rotation of the β and X does not affect the error

variance σ2. The full augmented log-posterior can be written therefore as

−N
2

ln(2πσ2)− ||y −Xβ||
2
2

2σ2
+ (K +m)/2 ln(λ2)−

∑
k

τ2
kλ

2/2− 1/2
∑
k

ln(τ2
k ) (32a)

−m/2 ln(σ2)− β
TDT τ−1Dβ

2σ2
(32b)
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From this, we see that the full conditional for σ2 becomes, assuming a conjugate prior of

p0(σ2) ∼ InverseGamma(a0, b0):

σ2|− ∼ InverseGamma

(
a0,σ +

1

2
[N +Rank(D)] ,

b0,σ +
1

2

[
(y −Xβ)T (y −Xβ) + βTDT τ−1Dβ

]) (33)

The full conditionals on the other parameters are easily derived, where τ is a K ×K diagonal

matrix with each element being τ2
k .

β|. ∼ N
(
A−1XTy, σ2A−1

)
; A = (XTX + τ−1) (34a)

1/τ2
k ∼ InvGaussian

(
λσ

|dTk βj |
, λ2

)
(34b)

λ2 ∼ Gamma

(
a0,Λ + [K +m]/2, b0,Λ +

1

2

K∑
k=1

τ2
k

)
(34c)

C.2 Multinomial Regression

Inference is derived for a K-category multinomial regression with the logistic regression being a

special case. Denote the observation as yi as taking on values from 1 to K. For simplicity, I

assume the covariates are equal across levels. For each yi, the generative model is multinomial:

p(yi = k|{βk}) ∝ exp(xTi βk) (35)

We can thus write the likelihood as, setting βK = 0 to identify the model.

N∏
i=1

[
exp(xTi βk)∑K
l=1 exp(xTi βk)

]I(yi=k)

(36)

Complex sparsity, as before, can be encoded by placing priors on βk. I focus on the case of

identicalD for each βk, but one could impose more complex restrictions by constraining coefficients

across-levels k but care would need to be taken to ensure that the baseline level k does not matter.

Assume, therefore, that the prior structure has the form

p({βk}) ∝
K−1∏
k=1

λm exp(−λ||Dβk||) (37)

One could write this using an augmented D and stacked β if one wished to impose restrictions
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across levels of βk. We can estimate this using an AECM algorithm (Meng and Van Dyk 1997)—

or a Gibbs Sampler; a detailed exposition can be found in the Appendix of Goplerud (2018a).

The intuition behind the AECM algorithm is that we can augment with different Polya-Gammas

to cyclically update the βk. At each step, we perform an E-Step update for the relevant Polya-

Gammas and the necessary τ2, noting that there are now different τ2 for each level.

Specifically, for each k, we want to do inference on the following posterior:

p({βk}|{β¬k}) =

N∏
i=1

exp(xTi βk − Cik)I(yi=k)

exp(xTi βk −Oik) + 1
· p({βk}Tt=1) (38)

Oitk = ln

∑
l 6=k

exp(xTi βl)


Thus, we can do Polya-Gamma augmentation as outlined in Goplerud (2018a), see also Polson,

Scott, and Windle (2013). To derive the relevant E-step, note that:

ω∗ik = E[ωik|βk,β¬k] =
1

2ψik
tanh(ψik/2); ψik = xTi βk −Oik (39)

Thus, the complete data log-posterior for βk conditional on β¬k can be written as:

N∑
i=1

[I(yi = k)− 1/2](xTi βk −Oik)− ω∗ik/2(xTi βk −Oik)2 − λ||Dβk (40)

Noting that the data augmentation for the complex sparsity penalty occurs independently

of the augmentation for the Polya-Gammas (ωik), this can be done simultaneously giving the

following complete data log-posterior:

N∑
i=1

[I(yi = k)− 1/2](xTi βk −Oik)− ω∗ik/2(xTi βk −Oik)2 − 1/2βTDT [τ ∗]Dβ (41)

[τ ∗]i = E

[
1

τ2
k

]
=

λ

|xTi βk|

βk can be maximized using least squares and thus the M -Step is tractable. By iterating this

process for each k, we can deterministically find the posterior mode.

D Strategies for Estimating λ

This section fleshes out some practical details of using the methods outlined above.
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D.1 Cross-Validation and Information Criteria

This method is conceptually straightforward in terms of what needs to be fit, but some non-trivial

practical issues are worth noting. First, assume one has created a grid of λ from very small

(implying little regularization) to very large (implying a large amount of regularization). We then

estimate the model for each λ. If one is using cross-validation, it is simply a matter of calculating

the model performance on the test-set using the coefficients from the model.

To calculate the information criteria, however, one needs to estimate the degree of freedom

following Tibshirani and Taylor (2011). Exactly which restrictions are “active”, i.e. dTk β = 0,

depends on the numerical precision of one’s computer as the EM algorithm. I thus recommend

checking a number of difference tolerances with 10−7 being a good starting point. The associated

software package rescales all non-binary X (and linear outcomes) to be on a standard deviation

scale and thus 10−7 is “effectively” zero.

Further, in terms of “refitting” the model, again one must decide which β are sufficiently close

to be grouped together; analogously, in the refitting case on the vanilla LASSO, which coefficients

are sufficiently close to zero to be ignored. Here, I use a slightly weaker standard (10−4), again

noting that since the data are standardized, this is actually a very small difference in standardized

terms. Again, one could examine the robustness of the results to this threshold. I conjecture that

this will mostly matter in terms of collapsing very small or highly similar groups together.

In terms of actually fitting the models along the regularization path, it is necessary to go

“backwards” when using the EM strategy. Noting that when dkβ = 0, this is a fixed point in the

algorithm and that restriction must hold for all subsequent iterations. Thus, initializing a model

at β = 0, as in the typical vanilla case, will not work. In this case, however, the best option is to

start with a small λ (little regularization) and fit the model from scratch. Then, one can increase

λ slightly using the old values as starting values, and then run to convergence. By iterating this

process and increasing λ from small to large, the entire path can be computed. The ideas in Park

and Hastie 2007 about calculating paths for non-linear models with the vanilla LASSO can likely

be adapted here for future increases in speed.

One estimates the coefficients for that fixed λ and then chooses an optimal λ based on some

performance on held-out data. There are three major issues with this framework: First, naive

cross-validation alone tends to select too small of λ (overfitting) and thus a variety of ad hoc

strategies (i.e. choose a λ that is one standard error larger than the cross-validated λ) exists.

Second, for multiple tuning parameters, i.e. if we have different λ governing the vanilla and
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temporal sparsity, cross-validation becomes prohibitively expensive. Third, a variety of research

(e.g. Park and Casella 2008; Polson and Scott 2011a) has shown that having λ be a random

variable improves performance as the model can average over regularization strengths.

D.2 Gibbs Sampler

The other major approach to selecting λ is to give it a prior and sample from its full conditional.

The distribution can be backed out from the posterior following Kyung et al. (2010) and the results

noted above.

p(λ2|−) ∝ (λ2)(k+rank(D))/2 exp(−1/2
∑
j

τ2
kλ

2)π(λ2) (42)

Thus, if λ2 is given a Gamma prior, the posterior is Gamma. Inference here is straightforward,

subject to the issue of calibrating the prior on λ2. As noted above, there is existing research to

suggest that in the vanilla case, giving λ2 a mean that grows at rate N lnP is reasonable. Thus,

the adaptation to this case is N ln rank(D) given that Appendix A showed that we can think of

there being m = rank(D) penalized coefficients.

D.3 EM Algorithm

As suggested above in passing, a hybrid strategy exists that estimates λ alongside β simultaneously—

in a deterministic fashion unlike the fully Bayesian paradigm. Assume that we have adopted the

strategy above and placed a prior on λ2. We have a posterior over p(β, λ2|X,y) that we wish

to sample from. Typically, we have assumed λ as fixed and thus maximized p(β|λ,y,X) with

respect to β. However, we could also maximize the joint posterior of p(β, λ2|y,X) with respect

to both β and λ. In EM jargon, we put λ into the M -Step of the algorithm.

This is not quite the quantity of interest that we typically care about, either from the Bayesian

or the frequentist paradigms, but it is one that seems to perform well in practice, see Ratkovic

and Tingley (2017) and Goplerud et al. (2018), and has also been used in other cases Polson and

Scott (2011b). This approach has some downsides; first, it tends to overshrink somewhat but also

may sometimes degenerate, i.e. λ is estimated to be zero or ‘infinity’, and thus there is either no

shrinkage or full shrinkage. From experiments and existing work that uses this approach, however,

this seems to occur less often than one might worry about, although this approach does tend to

over-shrink versus the fully Bayesian method.
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Thus, if it is infeasible to use the other approaches or one simply wants the fastest way of

getting a reasonable point estimate for prediction, this approach seems sensible. In terms of

initializing a Gibbs Sampler, this approach is ideal as it makes sure that we start in a region of

high joint-posterior density.

Another possible extension is to put λ into the E-Step of the algorithm, i.e. have a joint layer of

(τ2
k , λ) to take expectations over. This requires working with the joint posterior of p(τ2

k , λ|β,X,y),

but in the adaptive and regular LASSO penalty cases, this is likely “doable” as it requires only a

one-dimensional integral to evaluate p(λ|β,X,y). In this case, we are targeting the correct mode

p(β|X,y).

E Other Regularizations

In this section, I outline the two other forms of regularization that I integrate into my framework.

This is not exhaustive, but both permit a fast EM algorithm that is only a slight modification of

the results discussed above.

E.1 Adaptive LASSO

The adaptive LASSO has the following prior, following Zou (2006). Assume that wj = 1/|β̂j |

where β̂j is some
√
N -consistent estimator:

p(βj) =
λwγj

2
exp

(
−λwγj |βj |

)
(43)

After augmentation, we get the following:

βj ∼ N(0, τ2
j ) (44a)

τ2
j ∼ Exp

(
λ2[wγj ]2

2

)
(44b)

λ2 ∼ Gamma(a0, b0) (44c)

γ ∼ GenGamma(1, 2, 1); p(γ) = γ exp(−γ) (44d)

Define W as wγj stacked diagonally. We can extend the idea to the generalized LASSO, up to
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a constant that does not depend on γ or λ:

p(β) ∝ λrank(D)wWD exp (−λ||WDβ||) ; λ||WDβ|| =
∑
k

λwk|dTk β| (45)

The complication arises because the normalizing constant for the matrix, i.e. wWD, depends

on γ in a complicated way. We can use data augmentation, grouping λ and wk together:

p(β, {τ2
k}) ∝ det(2πτ )−1/2 exp(−1/2βTDT τ−1Dβ) ·

∏
k

exp(−λ2[wγj ]2/2τ2
k )λ2[wγj ]2/2 (46)

From here, we see both the symmetry and the difference. First, it is clear that the conditional

distribution for β is identical to before and the full conditional on τ2
k is

1/τ2
k ∼ InvGaus

(
λwγk
|dTk β|

, λ2[wγk ]2
)

(47)

We see that if we were to integrate away the β,

p({τ2
k}) ∝ det(2πτ )−1/2det(2πDT τ−1D)−1/2 ·

∏
k

exp(−λ2[wγj ]2/2τ2
k )λ2[wγj ]2/2 (48)

IfDDT is invertible, i.e. rank(D) = K, then we get the independent exponential distributions

as the marginal on τ2
k : We can use this result to note that

p({τ2
k}) =

∏
k

exp(−λ2[wj ]
γ/2τ2

k )λ2[wγj ]2/2 (49a)

p(β) = (DDT )−1λK · 2−K ·

[∏
k

wk

]γ
· exp(−λ||WDβ||) (49b)

In this particular case, therefore, we can write the normalizing constant separately in terms of

functions of D, γ, and λ. However, a similar simplification is not possible for the general case.

The difference is that the adaptive LASSO left multiplies D by a diagonal matrix of the

weights wk = |dTk β̂| raised to γ power. Thus, for now, I would assume a fixed γ = 1 when using

the adaptive LASSO or, perhaps, examine how varying this parameter affects the performance of

the model. Further research may seek to explore whether the normalizing in terms of γ can be

drawn out and, if so, whether it is possible to sample from γ directly.
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Fortunately, inference on λ is unchanged as its role in the normalizing constant is unchanged.

The full conditional is below, see Appendix A for details:

λ2 ∼ Gamma

a0 + [K +m]/2, b0 +
1

2

∑
j

τ2
j [wγj ]2

 (50a)

To estimate this via the EM algorithm, if λ2 is in the M -Step, this is effectively the same

algorithm for the vanilla LASSO. The relevant moments for the EM algorithm are also listed

below.

E[1/τ2
j ] =

λwγj
|βj |

(51a)

[wγj ]2E[τ2
j ] = [wγj ]2

[
|βj |
λwγj

+
1

λ2[wγj ]2

]
=
|βj |
λ
wγj +

1

λ2
(51b)

λ2[wγj ]2[Eτ2
j ] = λ|βj |wγj + 1 (51c)

F Details on Trounstine (2016)

In the first set of models (city segregation on the racial gap in voting), the following controls are

used: Diversity, % Black, % Asian, % Latino, median income, % renters, % college degree, biracial

contest, nonpartisan election, primary election, and logged population.

In the second set of models (city segregation on public goods outcomes), the following controls

are used: Diversity, % Black, % Asian, % Latino, median income, % local government employees,

% renters, % over 65, % college degree, population logged.
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