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Abstract

Although social scientists have long been interested in the process through which

ideas and behavior diffuse, the identification of causal diffusion effects, also known as

peer effects, remains challenging. Many scholars consider the commonly used assump-

tion of no omitted confounders to be untenable due to contextual confounding and ho-

mophily bias. To address this long-standing identification problem, I introduce a class

of stationary causal directed acyclic graphs (DAGs), which represent the time-invariant

nonparametric causal structure. I first show that this stationary causal DAG implies a

new statistical test that can detect a wide range of biases, including the two types men-

tioned above. The proposed test allows researchers to empirically assess the contentious

assumption of no omitted confounders. In addition, I develop a difference-in-difference

style estimator that can directly correct biases under an additional parametric assump-

tion. Leveraging the proposed methods, I study the spatial diffusion of hate crimes

in Germany. After correcting large upward bias in existing studies, I find hate crimes

diffuse only to areas that have a high proportion of school dropouts. To highlight the

general applicability of the proposed approach, I also analyze the network diffusion of

human rights norms. The proposed methodology is implemented in a forthcoming open

source software package.
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1 Introduction

Social scientists have long been interested in how ideas and behavior diffuse across space, net-

works, and time. In political science, scholars study the spatial and temporal clusters of civil

wars by analyzing how information, people, and goods move across space (Lake and Rothchild,

1998; Buhaug and Gleditsch, 2008). Political scientists have also investigated policy diffusion

(Simmons and Elkins, 2004; Gilardi, 2010; Graham et al., 2013), diffusion of social move-

ments (Tarrow, 1994; Beissinger, 2007), democracies (Huntington, 1991; Pevehouse, 2002),

norms (Keck and Sikkink, 1998; Hyde, 2011), and voting behavior (Nickerson, 2008; Sinclair,

2012; Alt et al., 2018). Economists and sociologists have examined the diffusion of innova-

tions (Rogers, 1962), job attainment (Granovetter, 1973), and school achievement (Sacerdote,

2001). Researchers in public health have focused on the spread of infectious disease (Halloran

and Struchiner, 1995; Morozova et al., 2018) and health behavior (Christakis and Fowler,

2007). In each of these research areas, a growing number of scholars aim to estimate the

causal impact of diffusion dynamics. The goal is to learn about causal diffusion processes in

which an outcome of one unit causes, not just correlates with, an outcome of another unit.

Despite its importance, the identification of causal diffusion effects, also known as peer

effects or social influence, is one of the most challenging causal inference problems (Galton,

1889; Manski, 1993). Although commonly-used statistical methods, including conventional

regression models and spatial econometric models (e.g., Anselin, 2013), require the assumption

of no omitted confounders, this assumption is often untenable because both outcomes and

confounders are interdependent across space and networks. In particular, two special types

of confounding/bias are well-known (VanderWeele and An, 2013). When there exist some

unobserved contextual factors that affect multiple units, we suffer from contextual confounding

— we cannot distinguish whether units affect one another through diffusion processes or units

are jointly affected by the shared unobserved contextual variables. Homophily bias arises

when the formation of network ties is affected by some unobserved characteristics. We cannot

discern whether connected units exhibit similar outcomes because of diffusion or because

they selectively become connected with others who have similar unobserved characteristics.

Emphasizing these biases, a number of papers across disciplines criticize existing diffusion

studies (e.g., Buhaug and Gleditsch, 2008; Lyons, 2011). In fact, causal diffusion effects are

often found to be overestimated by a large amount, for example, by 300 – 700% (Aral et al.,

2009; Eckles and Bakshy, 2017). Shalizi and Thomas (2011) argue that it is nearly impossible

to credibly estimate causal diffusion effects from observational studies.
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In this paper, I address this long-standing identification challenge by introducing a class

of stationary causal directed acyclic graphs (DAGs), which represent the time-invariant non-

parametric causal structure. Using this new class of stationary causal DAGs, I make two

contributions: I propose a statistical test and an estimator to detect and correct a wide range

of biases, including contextual confounding and homophily bias. The proposed approach pro-

vides a new way to credibly identify causal diffusion effects by directly addressing concerns

about omitted confounders.

This paper proposes stationary causal DAGs (Section 2) to overcome a dilemma of exist-

ing approaches, which have either been agnostic about the underlying DAG or assumed full

knowledge of its structure. On the one hand, causal diffusion analysis without any DAG struc-

ture has been intractable due to contextual confounding and homophily bias. On the other

hand, researchers often cannot justify their full knowledge of the underlying DAG structure in

applied contexts. Stationary causal DAGs use a simple time-invariant structure to formalize

the underlying causal diffusion process, without assuming its full structure. They only require

the existence of causal relationships among variables – not the effect or sign of such causal

relationships – to be stable over time.

Making use of this general class of stationary causal DAGs, I first propose a new statistical

test of the no omitted confounders assumption (Section 3). I prove that the proposed test –

using a lagged dependent variable – can detect a wide class of biases all at once, including con-

textual confounding and homophily bias. With this test, researchers can statistically evaluate

whether they adjust for all relevant confounders, rather than simply assuming the validity of

their confounder adjustment. Formally, this placebo test assesses whether a lagged dependent

variable is conditionally independent of the treatment variable. Statistical properties of this

test are based on a new theorem, which states that under stationary causal DAGs, the no

omitted confounders assumption is equivalent to the conditional independence of a lagged

dependent variable and the treatment variable.

Furthermore, I develop a new bias-corrected estimator that can directly remove biases

under an additional parametric assumption (Section 4). It subtracts the bias detected by the

placebo test from a biased estimator. I show that this estimator can correct biases under a

parametric assumption that the effect and imbalance of unobserved confounders are constant

over time. This method is complementary to the proposed placebo test – while it requires

a stronger parametric assumption about the underlying causal DAGs, it can directly correct

biases. I also demonstrate that this proposed estimator is closely connected to the widely-used

difference-in-difference estimator (Card and Krueger, 1994).
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This article builds on a growing literature of causal diffusion effects (e.g., Shalizi and

Thomas, 2011; Goldsmith-Pinkham and Imbens, 2013; Ogburn and VanderWeele, 2014; O’Malley

et al., 2014; Shalizi and McFowland III, 2016). In addition to research on the use of experi-

mental or quasi-experimental design (Duflo and Saez, 2003; Bramoullé et al., 2009; Fowler and

Christakis, 2010; An, 2015; Eckles et al., 2016), a series of papers address potential problems

of omitted confounders by deriving tests or bounds for causal diffusion effects. VanderWeele

et al. (2012) show that after controlling for homophily bias and contextual confounding, the

spatial autoregressive model can be used to test the null hypothesis of zero diffusion effects.

Anagnostopoulos et al. (2008)’s test also evaluates the same null hypothesis of no diffusion

effects. To compute bounds for diffusion effects, Ver Steeg and Galstyan (2010, 2013) examine

a specific causal DAG only with homophily and diffusion, and VanderWeele (2011) proposes

sensitivity analysis methods. This paper shares concerns about the no omitted confounders

assumption. However, instead of testing the null hypothesis of zero diffusion effects or deriving

bounds, this paper focuses on the point identification of causal diffusion effects.

This paper also draws upon emerging literature of negative controls, also known as placebo

variables (Lipsitch et al., 2010; Tchetgen Tchetgen, 2013). In particular, this paper extends

recent studies using negative controls in panel data settings (Sofer et al., 2016; Flanders et al.,

2017; Miao and Tchetgen Tchetgen, 2017) to the identification of causal diffusion effects.

The proposed methods differ from the previous literature in that I introduce a placebo test

and a bias-corrected estimator by exploiting a general class of stationary causal DAGs rather

than one specific causal DAG. Finally, causal DAGs (Pearl, 2009) are useful not only for

causal identification but also for asymptotic statistical inference. van der Laan (2014) and

Ogburn et al. (2017) offer one of the first foundations to use causal directed acyclic graphs or

nonparametric structural equation models for network data. Tchetgen Tchetgen et al. (2017)

provide an alternative approach using chain graphs. Because these recent papers develop

theories of statistical inference in a network asymptotic regime, they are complementary to

the methods proposed in this paper that focus on the identification of causal diffusion effects.

Two Applications: Spatial and Network Diffusion

Leveraging the proposed methods, I study the spatial diffusion of hate crimes against refugees

in Germany. In particular, I analyze a data set documented in Benček and Strasheim (2016)

and expanded as part of a joint project (Dancygier, Egami, Jamal, and Rischke, 2018). Ob-

serving temporal and spatial clusters of hate crimes, existing studies have developed a number

of theories on how hate crimes diffuse across space (e.g., Koopmans and Olzak, 2004; Myers,

2000). The central argument in such studies is that one incidence of hate crime can trigger
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another incidence, which again induces another, and can lead to waves of hate crimes (e.g.,

Braun, 2011). It is, therefore, of theoretical and policy interest to empirically estimate the

spatial dynamics of hate crimes by separating out spurious correlations due to contextual

confounding. Using the placebo test and the bias-corrected estimator, I find that the average

effect of spatial diffusion is small, in contrast to existing studies (Braun, 2011; Jäckle and

König, 2016). Further investigation of heterogeneous causal effects reveals that the spatial

diffusion effect is large only for counties that have a high proportion of school dropouts. This

finding suggests that the spatial diffusion of hate crimes is concentrated in places with low

educational performance. This is consistent with rich qualitative and quantitative evidence

that hate crime is often a problem of young people (Green et al., 2001). Connecting to this

application throughout the paper, I will describe how the proposed methods can facilitate

spatial diffusion analysis. The main empirical analysis appears in Section 5.1.

To demonstrate that the proposed methods can be applicable to network diffusion problems

in the same way, I analyze the diffusion of human rights norms (Greenhill, 2016). Extend-

ing an influential work (Johnston, 2001), Greenhill (2016) emphasizes that intergovernmental

organizations (IGOs) offer forums in which high-level policymakers from different countries

regularly meet, discuss policy issues, and learn from one another. He then argues that these

interactions between government representatives “catalyze the process of international norm

diffusion” (Greenhill, 2010, p. 129). The central research question is how much human rights

norms diffuse among states through networks based on IGO connections. The original anal-

ysis recognizes concerns about homophily bias and carefully adjusts for relevant confounders,

including network-related covariates, such as spatial and cultural similarity between states.

However, the proposed methods reveal that a large amount of bias remains. After correcting

the bias, an estimate of the average causal diffusion effect is close to zero, in contrast to the

original findings. This reanalysis illustrates that in network diffusion studies, we can suffer

from significant bias even after adjusting for network-related variables in addition to conven-

tional control variables, such as GDP and the Polity score. Importantly, it is difficult to know

the consequence of such bias on substantive findings without the proposed methods. Through-

out the paper, I use this study as an example of network diffusion problems and demonstrate

how the proposed approach can improve network diffusion analysis. The primary empirical

analysis appears in Section 5.2.

Both applications highlight the large differences in substantive conclusions that can result

from contextual confounding and homophily bias. By directly taking into account these biases,

the proposed methods enable more credible and defensible causal diffusion analysis.
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2 A Framework of Causal Diffusion Analysis

Causal diffusion refers to a process in which an outcome of one unit influences an outcome of

another unit over time (Shalizi and Thomas, 2011; VanderWeele et al., 2012). This definition

generalizes and formalizes the standard definition in political science (Elkins and Simmons,

2005) and other social sciences, “diffusion as the process by which prior adoption of a trait

or practice in a population alters the probability of adoption for remaining non-adopters”

(Strang, 1991, p. 325). In this section, I first define the average causal diffusion effect and

then describe challenges for its causal identification. Finally, I introduce a class of stationary

causal directed acyclic graphs to represent the time-invariant nonparametric causal structure.

I make use of this stationary causal DAG to develop a test of the no omitted confounders

assumption in Section 3 and a bias-corrected estimator in Section 4.

2.1 The Setup

In causal diffusion analysis, we consider n units over T time periods. Let Yit be the outcome for

unit i at time t for i ∈ {1, . . . , n} and t ∈ {0, 1, . . . , T}. Use Yt to denote a vector (Y1t, . . . , Ynt),

which contains the outcomes at time t for n units. The outcome Yit could be binary indicating

whether county i experiences at least one hate crime in month t or continuous representing

human rights performance of state i in year t, measured by the Personal Integrity Rights

(PIR) score (Greenhill, 2016).

To encode spatial or network connections between these n units, I follow the standard

spatial econometric literature (Anselin, 2013) and use a distance matrix W. The ith row of

this distance matrix, Wi, represents connections between unit i and other units. In practice,

researchers specify this distance matrix to reflect the underlying relationship responsible for

the diffusion process they study. For instance, in the study of hate crime diffusion, it is of

interest to estimate how much hate crimes in one county diffuse to other spatially proximate

counties. Here, the distance matrix W could encode physical distance between counties where

Wij might be an inverse of the distance between district i and j, i.e., the closer are districts

i and j, the larger is Wij. In the study of human rights norms (Greenhill, 2016), diffusion is

theorized to operate through the network connection that states form in intergovernmental

organizations (IGOs). If states i and j share memberships in at least one IGO, Wij takes

a positive value and zero otherwise. When two states share more IGO memberships, Wij is

larger, which captures an idea that states are more strongly affected by other states with

which they share more IGO memberships. As shown in these two examples, the distance

matrix can naturally take into account the different strength of ties as a weighted matrix.
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It can also incorporate directed connections, such as friendship networks, when necessary.

Finally, I define neighbors Ni to be other units who are connected with a given unit i, i.e.,

Ni ≡ {j : Wij 6= 0}.
I rely on potential outcomes (Neyman, 1923; Rubin, 1974) to formally define causal dif-

fusion effects. Based on the tradition of spatial econometrics and typical political science

applications (Anselin, 2013; Franzese and Hays, 2007), this paper focuses on the weighted av-

erage of the neighbors’ outcomes W>
i Yt as the treatment variable. Although I keep this setup

throughout the paper, the methods I introduce in this paper can be easily applied to other

definitions of the treatment variable. I use Dit ≡W>
i Yt to denote the treatment variable and

let Yi,t+1(d) represent the potential outcome variable of unit i at time t+ 1 if the unit receives

the treatment Dit = d.

In the hate crime diffusion study, the treatment variable for each county is the weighted

proportion of neighboring counties that experience hate crimes in month t. The binary po-

tential outcome Yi,t+1(d) then represents whether county i experiences at least one hate crime

in month t+ 1 if d% of neighboring counties suffer from hate crimes in month t. Similarly, in

the study of human rights norms diffusion (Greenhill, 2016), the potential outcome Yi,t+1(d)

is the PIR score of state i in year t + 1 if the weighted average of the PIR scores of its IGO

partners in year t (treatment) is set to d.

2.2 Definition of the Average Causal Diffusion Effect

Having set up the potential outcomes, I now introduce the causal diffusion effect as the

comparison of two different potential outcomes. In the hate crime diffusion study, researchers

might be interested in analyzing how the risk of hate crimes changes due to the incidence of

hate crimes in neighboring counties. For example, they can compare the case when none of

the neighboring counties experience hate crimes with the case when 30% of the neighboring

counties suffer from hate crimes.

Formally, I define the average causal diffusion effect (ACDE) at time t + 1 to be the

average causal effect of the treatment variable Dit on the outcome at time t + 1. It is the

comparison between the potential outcome under a higher value of the treatment Dit = dH

and the potential outcome under a lower value of the treatment Dit = dL.

Definition 1 (The Average Causal Diffusion Effect)

The average causal diffusion effect (ACDE) at time t+ 1 is defined as,

τt+1(d
H , dL) ≡ E[Yi,t+1(d

H)− Yi,t+1(d
L)], (1)

where dH and dL are two constants specified by researchers.
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The ACDE could quantify how much the risk of having hate crimes in the next month changes

if we see more hate crimes in neighboring counties this month. This captures how much hate

crimes diffuse across space over time. The ACDE could also represent how much human rights

practices, measured by PIR scores, would change next year if the IGO partners have higher

PIR scores this year. This quantity measures how much human rights norms diffuse over time

through the IGO network connections.

Finally, I introduce an assumption about the measurement of outcomes. I assume that we

observe the outcome variable at time t = 0 and then sequentially observe the outcome variables

at time t = 1, . . . , T . This assumption requires that we avoid the temporal aggregation

problem (Granger, 1988) that can mask the dynamics of the underlying diffusion process.

Assumption 1 (Sequential Consistency)

For each unit, we observe the outcome variable at time t = 0. Then, for every unit at every

time period t = 1, . . . , T , one of the potential outcome variables is observed, and the realized

outcome variable for unit i at time t+ 1 is denoted by

Yi,t+1 = Yi,t+1(Dit). (2)

The violation of this assumption implies simultaneity bias, that is, the treatment variable and

the outcome variable simultaneously cause each other (Danks and Plis, 2013; Hyttinen et al.,

2016). In the literature of causal diffusion analysis, the importance of this assumption has

recently received much attention because without it, the causal order of the treatment and out-

come becomes ambiguous and causal diffusion effects are no longer well-defined (Lyons, 2011;

Ogburn and VanderWeele, 2014; Ogburn et al., 2017). See Joffe and Robins (2009) and Zhang

et al. (2011) for a similar problem in the structural nested model and g-estimation. I main-

tain this assumption throughout the paper unless otherwise noted. In practice, researchers

can make this assumption more plausible by measuring outcomes frequently enough. For

example, the assumption could be more tenable when scholars can measure the incidence of

hate crimes monthly rather than annually.

2.3 Identification under No Omitted Confounders Assumption

In this section, I describe the widely used identification assumption of no omitted confounders

and explain pervasive concerns about its violation. This assumption states that all relevant

confounders are in a selected set of control variables. In practice, this assumption could imply

that the number of hate crimes in neighboring counties is as-if random given control variables.

Formally, the assumption states that the potential outcomes at time t+ 1 are independent

of a joint distribution of neighbors’ outcomes at time t given control variables.

7



Assumption 2 (No Omitted Confounders)

For i = 1, 2, . . . , n,

Yi,t+1(d) ⊥⊥ {Yjt}j∈Ni
| C, (3)

for d ∈ D where D is the support of Dit, and C is a set of pretreatment variables, which I call

a control set.

Under this assumption of no omitted confounders, we can estimate the ACDE without bias.

Result 1 (Identification under No Omitted Confounders Assumption)

Under Assumptions 1 and 2, the ACDE at time t+ 1 is identified as,

τt+1(d
H , dL) =

∫
C

{
E[Yi,t+1 | Dit = dH ,C = c]− E[Yi,t+1 | Dit = dL,C = c]

}
dFC(c),

where FC(c) is the cumulative distribution function of C and we assume that Pr(Dit = dH |C =

c) > 0 and Pr(Dit = dL|C = c) > 0 for i = 1, . . . , n and all c ∈ C where C is the support of

C (Imbens and Rubin, 2015). Control set C includes summary statistics of Wi, such as the

number of neighbors (Shalizi and Thomas, 2011).

This result implies that as long as the no omitted confounders assumption is satisfied, re-

searchers can estimate the ACDE by estimating the conditional expectation E[Yi,t+1|Dit,C]

and then averaging it over the empirical distribution of control variables C. In practice, we

can estimate E[Yi,t+1|Dit,C] through regression, matching, weighting, or other approaches

(Imbens, 2004; Ho et al., 2007).

Although many empirical studies of diffusion make the assumption of no omitted con-

founders, it is widely known that the assumption is often questionable in practice (Manski,

1993; Shalizi and Thomas, 2011; VanderWeele and An, 2013). Indeed, there are numerous

papers across disciplines criticizing existing observational diffusion studies for their implau-

sible assumptions of no omitted confounders; to name a few, Buhaug and Gleditsch (2008)

and Houle et al. (2016) in political science, Gibbons and Overman (2012) in economics, and

Lyons (2011) and Shalizi and Thomas (2011) in public health.

This concern over the assumption of no omitted confounders (Assumption 2) is pervasive

mainly because it implies the absence of two well-known types of biases: contextual confound-

ing and homophily bias. Contextual confounding – the primary focus of the spatial diffusion

literature – can exist when units share some unobserved contextual factors. For example,

in the study of hate crime diffusion, the risk of having hate crimes is likely to be affected

by some economic policies, which often affect multiple counties at the same time. In this
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case, researchers might observe spatial clusters of hate crimes even without diffusion. When

researchers fail to account for this common contextual variable, their estimates suffer from

contextual confounding, and they might overestimate the diffusion effect.

Another well-known type of bias is homophily bias – the main concern in the network

diffusion literature. This bias arises when units become connected due to their unobserved

characteristics. For example, in the study of norm diffusion (Greenhill, 2016), human rights

practices in a given state might be affected by its political culture, which is also likely to

influence what kinds of IGOs that the state joins. As a result, even without any diffusion,

states that share IGO memberships can have similar cultures and hence similar levels of human

rights practices. When we cannot adjust for such variables that affect both IGO memberships

and human rights practices, an estimate of causal diffusion effects suffers from homophily bias.

In the next subsection, I introduce a new class of causal directed acyclic graphs as a

framework of causal diffusion analysis. This graph representation clarifies how contextual

confounding and homophily bias differ although both are examples of omitted variable bias.

Most importantly, leveraging the framework, I develop new statistical methodologies to ad-

dress both contextual confounding and homophily bias in Sections 3 and 4.

2.4 Stationary Causal Directed Acyclic Graphs

In this paper, I formalize underlying diffusion processes using a new class of stationary causal

directed acyclic graphs (DAGs), which represent the time-invariant nonparametric causal

structure. Conventionally, researchers have taken one of the two approaches in causal diffu-

sion analysis: be agnostic about the underlying DAG or assume full knowledge of its structure.

On the one hand, researchers may wish to avoid any assumption about the underlying DAG.

However, causal diffusion analysis is then intractable due to contextual confounding and ho-

mophily bias. Methods agnostic about the underlying causal structure have lacked statistical

guarantees. On the other hand, researchers are often unable to justify their full knowledge

of the underlying DAG structure in applied contexts, even though the identification problem

becomes mathematically straightforward. In contrast to these previous approaches, the pro-

posed class of stationary causal DAGs uses a simple time-invariant structure to formalize the

underlying causal diffusion process, without assuming its full structure, so that methods can

be widely applicable in empirical settings. In Sections 3 and 4, by making use of this additional

structural stationarity, I develop a new statistical test of the no omitted confounders assump-

tion and a bias-corrected estimator. I review basic causal DAG terminologies in Appendix A.

Comprehensive introductions to causal DAGs can be found in Pearl (2009).
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Without loss of generality, I consider a class of causal DAGs that contain at least all the

variables observed by a researcher. Within this class, I define stationary causal DAGs to be

causal DAGs with a nonparametric causal structure that is time-invariant. Here, the causal

structure refers to the existence of causal relationships among variables (the existence of arrows

in causal DAGs), not the effect or sign of such causal relationships. For example, in the study

of hate crime diffusion, suppose that the unemployment rate is a part of the causal model

for hate crimes in one month. Then, stationary causal DAGs require that the unemployment

rate should stay a part of the causal model for hate crimes in the next month. Importantly,

the effect of the unemployment rate can be changing over time; the only requirement is about

the existence of the causal relationship. I provide a formal definition below.

Definition 2 (Stationary Causal Directed Acyclic Graphs)

Consider variables in a causal directed acyclic graph G that have more than one child or

have at least one parent. Among these variables, distinguish two types; the time-independent

variable Zi and the time-dependent variable Xit. A causal directed acyclic graph G is said to

be stationary when it meets the following conditions.

(2.1) Xit ∈ PA(Xi,t+1) for i ∈ {1, . . . , n} and t = 0, . . . , T − 1.

(2.2) For i, i′ ∈ {1, . . . , n}, ∃ t, k s.t. Xit ∈ PA(X̃i′,t+k)⇒ Xit′ ∈ PA(X̃i′,t′+k) for all t′ = 0, . . . , T − k.
(2.3) For i, i′ ∈ {1, . . . , n}, ∃ t s.t. Zi ∈ PA(Xi′t) ⇒ Zi ∈ PA(Xi′t′) for all t′ = 0, . . . , T,

where A ∈ PA(B) indicates that variable A is a parent of variable B.

Condition 2.1 requires that all time-dependent variables that have at least one parent be

affected by their own lagged variables. This condition is more plausible when the time intervals

are shorter. Condition 2.2 means that if two time-dependent variables have a child-parent

relationship at one time period, the same causal relationship should exist for all other time

periods. Similarly, Condition 2.3 requires that if a time-independent variable is a parent of a

time-dependent variable at one time period, the same child-parent relationship should exist

at all other time periods. The last two requirements are at the heart of the stationary causal

DAG – the existence of causal relationships should be stable over time. I provide examples

of stationary causal DAGs in Figure 1, representing basic diffusion dynamics, contextual

confounding and homophily bias.

In many social and biomedical science applications, scholars often assume that the under-

lying causal structure is stable over time, even if causal effects might change substantially over

time. Hence, this structural stationarity is often a natural requirement for DAGs. In fact,

causal DAGs in several important papers about causal diffusion effects (Shalizi and Thomas,
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2011; O’Malley et al., 2014; Ogburn and VanderWeele, 2014) are examples of the proposed

general class of stationary causal DAGs. Causal DAGs in the causal discovery literature of-

ten impose a similar but stronger condition (Danks and Plis, 2013; Hyttinen et al., 2016).

They often assume that variables are affected only by one-time lag (also known as the first

order Markov assumption) and this structure is time-invariant. In contrast, stationary DAGs

introduced here allow for any higher order temporal dependence (Condition 2.2).

When the causal structure changes at some time, the underlying DAG is not stationary.

However, if researchers know the time when the underlying structure changes, we can still

make use of stationary DAGs separately for before and after this time point. For example,

the network diffusion dynamics of human rights norms might be radically different before and

after the end of the Cold War. Then, we can analyze data before and after 1991 separately,

each as a stationary causal DAG.

Illustration of Contextual Confounding and Homophily Bias

Here, I use stationary causal DAGs to illustrate contextual confounding and homophily bias.

With this DAG representation, it becomes clear that both types of biases are due to unblocked

back-door paths that have different structural roots.

I begin by introducing a stationary causal DAG for a simple diffusion model (Figure 1 (a))

where there exists only diffusion. This causal DAG in Figure 1 (a) has six nodes representing

outcome variables Yit for two units i ∈ {1, 2} over three time periods t ∈ {0, 1, 2}. The

arrows between these six nodes represent direct causal relationships where A→ B means that

variable A can have a direct causal effect on variable B. Without loss of generality, I focus

on the causal diffusion effect of Y11 on Y22 where Y11 is the treatment variable (blue), Y22 is

the outcome variable (red), and the causal arrow of interest Y11 → Y22 is colored blue. I use

gray square boxes to indicate variables that are adjusted for.

First, this causal DAG in Figure 1 (a) naturally encodes stationarity: Yi,t+1 is directly

affected by Yit and the existence of causal diffusion effects is time-invariant, e.g., Y11 → Y22

and Y10 → Y21. This causal DAG also shows that we can satisfy the assumption of no omitted

confounders (Assumption 2) by adjusting for Y21 (the gray square box), which blocks all back-

door paths from Y11 to Y22. When diffusion is the only mechanism behind correlated outcomes

among connected units, researchers only need to adjust for previous outcomes.

Next, I introduce a slightly more complicated stationary causal DAG to consider contextual

confounding. As defined in the previous subsection, contextual confounding results from

unadjusted contextual factors. In addition to six nodes in Figure 1 (a), a causal DAG in

Figure 1 (b) has three additional contextual variables Gt with t ∈ {0, 1, 2}. In the study of
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Figure 1: Stationary Causal Directed Acyclic Graphs for Diffusion, Contextual Confounding,
and Homophily Bias. Note: The causal diffusion effect of Y11 (blue) on Y22 (red) is the quantity

of interest and the causal arrow Y11 → Y22 is colored blue. Gray square boxes indicate control

variables. Figure (a) shows the diffusion-only model. Figure (b) illustrates contextual confounding

as a back-door path Y11 ← G1 → G2 → Y22 (the thick black path). Figure (c) shows homophily bias

as a back-door path Y11 ← U1 → W ← U2 → Y22 (the thick black path).

hate crime diffusion, this contextual variable could be some economic policies affecting multiple

counties. This graph shows that when researchers only adjust for the previous outcome Y21,

they suffer from contextual confounding, which is represented as a back-door path Y11 ←
G1 → G2 → Y22 (the thick black path in Figure 1 (b)). If researchers can adjust for G1 or

G2, this back-door path is blocked, and the assumption of no omitted confounders is satisfied.

Although this graph is the simplest representation of contextual confounding, it shows that

researchers have to adjust for all contextual variables that are spatially correlated. Especially

in spatial diffusion analysis, because many variables are naturally correlated across space (e.g.,

Buhaug and Gleditsch, 2008), it is difficult to observe all relevant contextual variables and

avoid contextual confounding.

Finally, I examine a stationary causal DAG representing homophily bias (Figure 1 (c)).

In addition to six nodes in the first causal DAG, this causal DAG contains two unit-level

variables Ui with i ∈ {1, 2} and variable W representing the connection between two units.

This variable W takes 1 when two units are connected, and it takes 0 otherwise. In the study

of human rights norm diffusion, variable U could represent political culture and variable W

could indicate whether two states share memberships in at least one IGO.

The core of the homophily problem is that this connection variable W is affected by two

unit-level characteristics U1 and U2. Shalizi and Thomas (2011) show that the connection vari-
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able W is always, but often implicitly, adjusted for in any diffusion analysis so that researchers

can compare observations with similar spatial/network pre-treatment characteristics. This is

why there is a gray square box around W in Figure 1 (c). Technically speaking, we need to

include directed arrows from W to six outcome variables, but those arrows cannot form any

unblocked back-door path because W is always adjusted for as explained above. Therefore, we

exclude them in Figure 1 (c) for the sake of visual simplicity. Shalizi and Thomas (2011) also

show that when researchers do not adjust for unit-level variables explaining the connection

W , they suffer from homophily bias. In the causal DAG, this homophily bias is represented as

a collider bias through a back-door path, Y11 ← U1 → W ← U2 → Y22 (the thick black path

in Figure 1 (c)). This simple graph illustrates that the assumption of no omitted confounders

requires observing all variables explaining connections between units. In practice, because

subjects of the study often form their network connections long before researchers observe

their behavior, it is difficult to adjust for variables explaining their connections and avoid

homophily bias.

3 A Placebo Test to Detect Biases

Identification of the ACDE is challenging in practice. The central concern is that the commonly-

used identification assumption of no omitted confounders is often difficult to justify, as dis-

cussed in the previous section. In this section, I make use of stationary DAGs to develop a

new statistical test of this contentious assumption. I prove that the proposed test – using a

lagged dependent variable as a general placebo outcome – can detect a wide class of biases,

including contextual confounding and homophily bias. This placebo test helps the credible

identification of causal diffusion effects by statistically assessing the validity of the confounder

adjustment. Although the main theorem behind the placebo test utilizes theories of causal

DAGs, the application of the method does not require familiarity with causal DAGs or full

knowledge of the underlying causal DAG. An investigator, however, needs to know the time

ordering of outcomes and observed confounders. I first introduce the main theorem along

with its basic intuition (Section 3.1) and then describe a general procedure of the placebo test

(Section 3.2). In Section 3.3, I provide some extensions.

3.1 Equivalence Theorem

The proposed statistical test of the no omitted confounders assumption exploits a lagged de-

pendent variable as a placebo outcome. In particular, it tests the assumption of no omitted

confounders by assessing whether a lagged dependent variable is conditionally independent of
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the treatment variable. I show that if a lagged dependent variable is conditionally independent

of the treatment variable, it provides statistical evidence for the assumption of no omitted

confounders. Conversely, when a lagged dependent variable and the treatment are condition-

ally dependent, it implies that some relevant confounders are omitted. This placebo test is

based on an equivalence theorem (Theorem 1), which states that the conditional independence

of the lagged outcome and the treatment is equivalent to the no omitted confounders assump-

tion under stationary causal DAGs. Proof of this theorem makes use of the time-invariant

structure of stationary causal DAGs.

Before deriving this main theorem, I develop some intuition to understand why a lagged

dependent variable can serve as a placebo outcome to detect biases under stationary causal

DAGs. The basic idea is simple: the structure of spurious correlation between the main

outcome and the treatment is similar to the one between the placebo outcome (a lagged

dependent variable) and the treatment. Using this structural similarity, we can assess the

existence of spurious correlation between the main outcome and the treatment (whether the no

omitted confounders assumptions holds) by checking whether there exists spurious correlation

between the placebo outcome and the treatment.

Using causal DAG terminologies, the same intuition can be restated that back-door paths

between the main outcome and the treatment are similar to those between the placebo outcome

and the treatment. For example, a back-door path in Figure 1 (b) representing contextual

confounding (Y11 ← G1 → G2 → Y22) is similar to the one between the treatment and the

placebo outcome (Y11 ← G1 → Y21), although they are not the same. Another back-door path

in Figure 1 (c) representing homophily bias (Y11 ← U1 → W ← U2 → Y22) is also similar to

a back-door path to the placebo outcome (Y11 ← U1 → W ← U2 → Y21). The time-invariant

structure of stationary DAGs enables the structural similarity of these back-door paths.

Exploiting this structural similarity, the proposed placebo test checks whether there is

any unblocked back-door path between the main outcome and the treatment by testing the

existence of unblocked back-door paths between the placebo outcome and the treatment.

Because the treatment has no causal effect on the placebo outcome, the treatment should

be conditionally independent of the placebo outcome if there is no unblocked back-door path

between the main outcome and the treatment (i.e., the assumption of no omitted confounders

holds). This conditional independence of the placebo outcome and treatment is what the

proposed test checks. If the conditional independence does not hold, it statistically implies the

violation of the no omitted confounders assumption. If instead, the conditional independence

holds, it provides strong statistical evidence for the no omitted confounders assumption.
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Now, I formally prove the main theoretical result justifying the placebo test (details of its

procedure are in Section 3.2). It states that, when the underlying causal DAG is stationary,

the assumption of no omitted confounders is equivalent to the conditional independence of the

simultaneous outcomes given a placebo set. Researchers can derive this placebo set by a simple

deterministic rule introduced below. The following formal result implies that researchers

can use a lagged dependent variable as a general placebo outcome to statistically assess the

assumption of no omitted confounders.

Theorem 1 (Equivalence between No Omitted Confounders Assumption and Condi-

tional Independence of Simultaneous Outcomes) Under Assumption 1, for every causal

model faithful to stationary causal DAGs,

Yi,t+1(d) ⊥⊥ {Yjt}j∈Ni
| C ⇐⇒ Yit ⊥⊥ {Yjt}j∈Ni

| CP , (4)

where a placebo set CP is defined as

CP ≡ {C,C(−1), {Yj,t−1}j∈Ni
} \Des(Yit), (5)

where C(−1) is a lag of the time-dependent variables in C, {Yj,t−1}j∈Ni
is a lag of the treatment

variable, and Des(Yit) is a descendant of Yit, i.e., a set of variables affected by Yit. The violation

of the no omitted confounders assumption, if any, is assumed to be proper in a sense defined

below.

Proof is in Appendix C.2. Now I discuss several important implications of the theorem. First,

in Equation (4), the assumption of no omitted confounders (the left-hand side) is proven to

be equivalent to the conditional independence of the observed outcome of individual i and

her neighbors’ outcomes at the same time period given a placebo set (the right-hand side).

Because this right-hand side is observable and testable, this theorem directly implies that we

can statistically assess the assumption of no omitted confounders by testing the conditional

independence of the simultaneous outcomes on the right-hand side of the equation. This

theorem implies a procedure of the placebo test I introduce in the next subsection.

The difference between a control set C and a placebo set CP is to guarantee that unblocked

back-door paths between the main outcome and the treatment are as similar as possible to

those between the placebo outcome and the treatment. To derive this placebo set, we only

need to know which variables in the control set are time-dependent and which variables are

affected by outcomes at time t. The former information is often readily available, and the

latter one is essentially the same as the information we usually use to avoid post-treatment

bias in the standard causal inference problem.
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Finally, the theorem requires one technical condition – the violation of the no omitted

confounders assumption, if any, is proper. It means that bias (i.e., the violation of the no

omitted confounders assumption) is in fact driven by omitted variables. Bias is not proper

when the only source of bias is the misadjustment of the lag structure of observed covari-

ates. Intuitively, the proposed placebo test is designed to detect bias from omitted variables

and hence, it cannot detect biases that merely come from misunderstandings about the lag

structure of observed variables. Importantly, contextual confounding and homophily bias are

proper, and hence within the scope of this theorem. I provide a formal definition and examples

in Appendix C.1.

3.2 Procedure

The proposed placebo test is easy to implement – it has only two steps. After introducing a

general procedure of the placebo test, I describe each step in order.

A Placebo Test

For a given control set C, the following test statistically assesses whether the control set

contains all confounders, i.e., whether the assumption of no omitted confounders holds

(Assumption 2).

Step 1: Derive a placebo set CP from a selected control set C based on Equation (5).

Step 2: Test the conditional independence, Yit ⊥⊥ {Yjt}j∈Ni
| CP .

In Step 2, if the conditional independence does not hold, it implies the violation of the

no omitted confounders assumption. In contrast, if the conditional independence holds, it

provides strong statistical evidence for the no omitted confounders assumption.

Deriving A Placebo Set The first step of the proposed placebo test is to derive a placebo

set CP from a selected control set C (Equation (5)). This intermediate step guarantees that

unblocked back-door paths between the main outcome and the treatment are similar to those

between the placebo outcome and the treatment. This step follows a simple deterministic

rule: (1) add lags of existing control variables and a lag of the treatment variable and then

(2) remove all the variables affected by outcomes at time t. As one simple example, I consider

the hate crime diffusion study where the main outcome is the incidence of hate crimes at time

t+ 1 and the treatment is the proportion of neighbors that experienced hate crimes at time t,

i.e., Yi,t+1 ≡ Hate Crimest+1 and Dit ≡ Prop of Neighbors with Hate Crimest. Suppose

we adjust for two variables: the unemployment rate at time t and whether a county belongs
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to East Germany, i.e., C ≡ {Unemploymentt, East}. Then, a corresponding placebo set adds

two variables to the original control variables: the unemployment rate at time t− 1 (a lag of

the existing control variable) and the proportion of neighbors that had hate crimes at time

t− 1 (a lag of the treatment variable), i.e., CP ≡ {Unemploymentt, Unemploymentt−1, East,
Prop of Neighbors with Hate Crimest−1}. This placebo set is for the case where the un-

employment rate at time t is not affected by the incidence of hate crimes at time t. Otherwise,

we need to remove the unemployment rate at time t and thus a placebo set should instead be

CP ≡ {Unemploymentt−1, East, Prop of Neighbors with Hate Crimest−1}.

Testing Conditional Independence Although there are many ways to implement the

second step of the placebo test, this paper proposes a parametric test based on the spatial

autoregressive (SAR) model (e.g., Anselin, 2013; Beck et al., 2006; Cressie, 2015; Franzese

and Hays, 2007). For example, when outcomes are continuous, we can implement the placebo

test by the following linear spatial autoregressive model.

Yit = α0 + δW>
i Yt + γ>0 CP + εit, (6)

where W>
i Yt ≡ Dit is the treatment variable, CP is a placebo set, and εit is an error term.

The placebo outcome Yit is conditionally independent of the treatment variable when

the assumption of no omitted confounders (Assumption 2) holds. Therefore, the spatial

autoregressive coefficient δ serves as a test statistic of the placebo test. If the assumption of

no omitted confounders holds, this coefficient is zero, and its p-value should follow a uniform

distribution. By testing whether this spatial autoregressive coefficient is zero, researchers can

assess the no omitted confounders assumption and thus detect biases, which include contextual

confounding and homophily bias. When outcomes take different forms (e.g., binary, counts),

we can use corresponding spatial autoregressive models, such as probit or poisson versions.

It is important to note that if the parametric assumptions of the model are violated, the

spatial autoregressive coefficient in Equation (6) can be zero even when omitted variable bias

remains. As any other statistical tests, a specific parametric placebo test can fail if its un-

derlying parametric assumptions do not hold. A key advantage of the proposed approach

is that the equivalence theorem (Theorem 1) is nonparametric. The theorem implies that

when there exist no omitted confounders, the placebo outcome and the treatment variable are

conditionally independent in any parametric and nonparametric tests. Therefore, in practice,

researchers can verify the conditional independence of the placebo outcome and the treat-

ment variable using additional nonparametric tests (e.g., Zhang et al., 2012) or several other

parametric tests as described in Section 5.1.
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(a) A Stationary Causal DAG

C CP Placebo Test

No Bias Y21, U2, G2 Y20, Y10, U2, G2, G1 Accept

Contextual
Y21, U2 Y20, Y10, U2 Reject

Confounding

Homophily Bias Y21, G2, G1 Y20, Y10, G2, G1, G0 Reject

Both Y21, Y20 Y20, Y10 Reject

(b) Control and Placebo Sets

Figure 2: Placebo Tests with A Stationary Causal DAG. Note: The causal DAG has twelve

nodes in total; six nodes Yit representing outcome variables for two individuals i ∈ {1, 2} over three

time periods t ∈ {0, 1, 2}, three nodes Gt representing contextual variables for t ∈ {0, 1, 2}, two nodes

Ui representing individual-level characteristics for i ∈ {1, 2}, and finally variable W indicating the

connection of two individuals, taking 1 if they are connected and 0 otherwise. I focus on the ACDE

of Y11 on Y22 where Y11 is the treatment variable (blue), Y22 is the outcome variable (red), and the

causal arrow of interest Y11 → Y22 is colored blue. The placebo outcome Y21 is colored orange.

This use of the SAR model as a placebo test differs from existing approaches in the spatial

econometrics literature that are designed to capture spatial correlations. While researchers

conventionally estimate and interpret the spatial autoregressive coefficient as the strength

of spatial correlation, the proposed placebo test uses the spatial autoregressive coefficient to

detect biases rather than to estimate diffusion effects. When the assumption of no omitted

confounders holds, this spatial autoregressive coefficient in Equation (6) should be zero. For

the estimation of the ACDE, causal diffusion analysis estimates the conditional expectation

Ê[Yi,t+1 | Dit,C] and then uses the identification formula in Result 1.

Illustration with Causal DAG

Here, I use a stationary causal DAG to illustrate how the proposed placebo test works in a

simple case. Although the proposed test is applicable to a wide range of empirical settings,

I introduce a specific causal DAG (Figure 2 (a)) as one concrete example. This causal DAG

combines two causal DAGs in Figure 1 (b) and (c), and thus it can represent both contextual

confounding and homophily bias. The causal DAG has twelve nodes in total and definitions

of each variable are the same as Section 2.4 (also described in the Note of Figure 2). My

main focus is on the ACDE of Y11 on Y22 where Y11 is the treatment variable (blue), Y22 is
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the outcome variable (red), and the causal arrow of interest Y11 → Y22 is colored blue. The

placebo outcome Y21 is colored orange.

Based on this causal DAG in Figure 2 (a), Table in Figure 2 (b) shows four different

scenarios: no bias, contextual confounding, homophily bias, and both types of biases. These

scenarios show how the proposed placebo test detects biases by exploiting the stationarity

of the causal DAG. For each set of control variables, the placebo test checks conditional

independence, Y11 ⊥⊥ Y21 | CP where we derive a placebo set CP from a chosen control set C

using Equation (5).

First, when we control for three variables {Y21, U2, G2}, the ACDE of interest is identified

(“No Bias”). Without knowledge of the entire causal DAG, we can assess the absence of

bias by implementing the placebo test. Following Equation (5), we can derive a placebo set

CP = {Y20, Y10, U2, G2, G1} and then the placebo test checks Y11⊥⊥Y21|CP . In Figure 2 (a), we

can verify that there is no unblocked back-door path between Y11 and Y21. In this first scenario,

the conditional independence holds, and thus the selected control set correctly satisfies the

null hypothesis of the placebo test.

Second, I consider a typical form of contextual confounding. When we control for two

variables {Y21, U2}, the ACDE of interest is not identified due to a back-door path (Y11 ←
G1 → G2 → Y22). We now verify that the placebo test correctly detects this bias. In the first

step, we derive a placebo set as CP = {Y20, Y10, U2}. Then, we assess whether there is any

unblocked back-door path between Y11 and Y21. In fact, we can correctly reject the placebo

test; Y11 6⊥⊥ Y21|CP due to a back-door path (Y11 ← G1 → Y22). The placebo test shows that

the selected control set fails to adjust for all confounders.

Third, I investigate homophily bias. When we control for three variables {Y21, G2, G1}, the

ACDE of interest is not identified due to a back-door path (Y11 ← U1 → W ← U2 → Y22).

Recall that W is always conditioned in causal diffusion analysis (indicated by the square box

around W ; see Section 2.4). For this case, a placebo set is CP = {Y20, Y10, G2, G1, G0} and

we can verify that Y11 6⊥⊥ Y21|CP due to a back-door path (Y11 ← U1 → W ← U2 → Y21).

The placebo test correctly detects homophily bias. Finally, if we follow the same logic, it is

straightforward to verify that the proposed placebo test can also detect biases even when both

contextual confounding and homophily bias coexist.

3.3 Extensions

In this subsection, I introduce two extensions of the placebo test by relying on the equivalence

theorem (Theorem 1). First, I show that the proposed placebo test can be viewed as a joint
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test of the sequential consistency assumption (Assumption 1) and the no omitted confounders

assumption (Assumption 2). Second, by reverse-engineering the placebo test, I develop a

data-assisted covariate selection algorithm to choose a valid set of control variables from pre-

treatment covariates.

3.3.1 A Placebo Test as A Joint Test

I have mostly focused on how the proposed placebo test assesses the assumption of no omit-

ted confounders given the sequential consistency assumption (Assumption 1). However, the

proposed placebo test is helpful even for assessing the sequential consistency assumption. The

proposed placebo test jointly assesses the two identification assumptions: both the sequential

consistency assumption as well as the assumption of no omitted confounders.

Lemma 1 (Equivalence between Identification Assumptions and Conditional Indepen-

dence of Simultaneous Outcomes) For every causal model faithful to stationary causal

DAGs,  Sequential Consistency (Assumption 1)

Yi,t+1(d) ⊥⊥ {Yjt}j∈Ni
| C

⇐⇒ Yit ⊥⊥ {Yjt}j∈Ni
| CP . (7)

This lemma is powerful. It shows that researchers can assess not only the assumption of no

omitted confounders (Assumption 2) but also the sequential consistency assumption (Assump-

tion 1) together. That is, researchers can jointly detect simultaneity bias and omitted variable

bias. When the conditional independence of simultaneous outcomes holds, it provides strong

statistical evidence for both identification assumptions, i.e., the absence of simultaneity bias

and omitted variable bias. In contrast, when we reject the null hypothesis of the placebo test,

we cannot tell which assumption is violated. When the sequential consistency assumption is

violated, the problem is more severe than omitted variable bias – causal diffusion effects are

not well defined. Therefore, the first step of causal diffusion analysis, even before consider-

ing omitted variable bias, is to measure outcomes frequently enough to satisfy the sequential

consistency assumption and have well-defined causal estimands.

Proof of this lemma is essentially the same as the one for Theorem 1. The additional idea

is that when the sequential consistency assumption is violated, there is no set of variables

that can make simultaneous outcomes conditionally independent – the null hypothesis of the

placebo test is always rejected.

3.3.2 Data-Assisted Covariate Selection

By further exploiting the equivalence theorem (Theorem 1), I show that we can directly

select a valid set of control variables from pre-treatment covariates, if any, under additional
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parametric assumptions. A proposed data-assisted covariate selection algorithm is based on

the following idea. The equivalence theorem implies that, if we can find a set of covariates

that makes simultaneous outcomes conditionally independent, we can reverse-engineer a valid

control set using Equation (5). An important step is to estimate conditional independence

relationships among observed covariates. I show how to apply Markov random fields to do so

and then select a valid control set.1

Markov Random Fields: Review The equivalence theorem demonstrates that the as-

sumption of no omitted confounders not only implies but is also implied by the conditional

independence of observed simultaneous outcomes. As long as a placebo set CP satisfies the

conditional independence condition (the right-hand side of Equation (4)), its corresponding

control set C should satisfy the assumption of no omitted confounders.

To find such a placebo set, Markov random fields, also known as undirected graphical

models, can serve as the main basis. A Markov random field is a statistical model designed

to encode conditional independence relationships over multiple variables. Formally, a Markov

random field is specified by an undirected graph G = (V,Ed) with vertex set V = {1, . . . , p}
and edge set Ed ⊂ V × V . Each vertex represents a random variable, and an edge exists

between two vertices A andB if and only if the two random variables are dependent conditional

on all remaining variables. This property is known as the pairwise Markov property (Lauritzen,

1996). For graphs with positive distributions, this pairwise Markov property is equivalent to

the global Markov property: if every path between two vertices A and B intersects a vertex in

set S, two random variables are independent conditional on S, i.e., A⊥⊥B | S. Set S is said to

separate two random variables A and B in a Markov graph. According to this global Markov

property, the selection of the valid placebo set can be recast as the problem of finding a set

of covariates separating the placebo outcome and the treatment variable in a given Markov

graph. Egami and Hartman (2018) use a similar idea in a different context of generalizing

experimental estimates. Introductions to Markov random fields can be found in Lauritzen

(1996) and Murphy (2012).

To select a control set from the data, I first need to estimate a Markov random field over

the placebo outcome, the treatment variable, and all potential confounders. To respect both

continuous and categorical variables, I rely on a pairwise mixed Markov random field (Yang

et al., 2015). In particular, I assume that each covariate Z` is drawn from the following

1Markov random fields are used in this paper to simply capture associations between outcomes and potential

confounders. It is important to note that it is not used to directly estimate the underlying causal DAG.
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exponential family distribution conditional on the remaining variable ZV \`.

Pr(Z` | ZV \`) = exp

{
α`Z` +

∑
m6=`

η`,mZ`Zm + ϕ(Z`)− Φ(ZV \`)

}
, (8)

where ϕ(Z`) is a base measure given by the chosen exponential family, and Φ(ZV \`) is the

normalization constant. For example, for the normal distribution, the conditional distribution

can be seen as a linear regression model.

Z` = α` +
∑
m 6=`

η`,mZm + ε`, (9)

where ε` is drawn from the normal distribution with mean 0. In general, each covariate is

assumed to follow a generalized linear model conditional on the remaining variables, and hence

E[Z` | ZV \`] = link(α` +
∑

m6=` η`,mZm) where link depends on types of outcomes.

Given this setup, the problem of graph estimation can be reduced to the estimation of

parameters {η`,m}m 6=`; η`,m 6= 0 for variable Zm in the neighbors of variable Z` and η`,m = 0

for all other variables. Following Meinshausen and Bühlmann (2006), each generalized linear

model is estimated with `1 (lasso) penalty to encourage sparsity. Using the AND rule, Êd`,m =

1 when η`,m 6= 0 and ηm,` 6= 0. The same consistency result holds even when researchers use

an alternative OR rule (Êd`,m = 1 when η`,m 6= 0 or ηm,` 6= 0).

Selecting A Valid Control Set Given an estimated Markov graph, we can find a desirable

placebo set by using graph separation rules. Due to the global Markov property, neighbors

of the placebo outcome in the estimated graph is guaranteed to make the placebo outcome

and the treatment conditionally independent, as long as there is no edge between the placebo

outcome and the treatment. It is important to note that even when this proposed algorithm

cannot find any set that makes the placebo outcome and the treatment conditionally inde-

pendent, it does not imply the absence of valid sets. In other words, while the discovered set

is valid asymptotically, the failure of the algorithm does not imply that no sets of observed

covariates satisfy the desirable conditional independence. This is because Markov random

fields encode only a subset of conditional independence relationships.

Finally, we can reverse-engineer a valid control set from the estimated placebo set. In a

simple case, an estimated control set comprises all time-independent variables and forward-

lags of all time-dependent variables in the estimated placebo set. After estimating a valid

set of control variables using the estimated Markov random field, it is important in practice

to run the proposed placebo test and ensure that the selected control set actually satisfies

conditions implied by the placebo test. Because Markov random fields are used only as an
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intermediate step to achieve this conditional independence, this additional placebo test is

essential in verifying that the proposed algorithm selects a valid control set successfully.

4 A Bias-Corrected Estimator

In the previous section, I show how the proposed placebo test can detect a wide class of

biases under stationary causal DAGs. In practice, if the placebo test detects bias, one may

want to collect more data and improve the selection of control variables. This strategy might,

however, be infeasible in many applied settings. To help researchers in such common situ-

ations, this section considers how to correct biases by introducing an additional parametric

assumption. In particular, I propose a bias-corrected estimator – it subtracts the bias detected

by the placebo test from a biased estimator. I show that this estimator can remove biases

under an assumption that the effect and imbalance of unobserved confounders are stable over

time. I also demonstrate that this proposed estimator is closely connected to the widely-used

difference-in-difference estimator (Card and Krueger, 1994; Angrist and Pischke, 2008). Sec-

tion 4.1 describes the bias-corrected estimator with a simple example of linear models, and

Section 4.2 introduces a general theory of bias correction.

4.1 An Example with Linear Models

To develop some intuition for a theory of a bias-corrected estimator, I first consider a simple

example with linear models. I assume here that a selected set of control variables is time-

independent and the same as its corresponding placebo set. A general result is provided in

the next subsection.

Suppose we fit a linear model in which we regress the outcome at time t+1 on the treatment

variable and the selected control set.

Yi,t+1 = α + βDit + γ>C + ε̃i,t+1, (10)

where Dit is the treatment variable, C is the selected control set, and ε̃i,t+1 is an error term.

As presented in Result 1, if the assumption of no omitted confounders (Assumption 2) holds,

β̂×(dH−dL) is an unbiased estimator of the ACDE given that the linear model specification is

correct. In contrast, when the no omitted confounders assumption is violated, this estimator

is biased. We would like to assess whether the assumption of no omitted confounders holds

and also correct biases if any.

To assess the assumption of no omitted confounders, suppose we run a parametric placebo

test using the following linear spatial autoregressive model as in Equation (6).

Yit = α0 + δDit + γ>0 CP + εit,
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where CP is a placebo set and εit is an error term. If the assumption of no omitted confounders

holds, the spatial autoregressive coefficient δ should be zero (Theorem 1). In contrast, if the

assumption of no omitted confounders does not hold, an estimated coefficient δ̂ then serves

as a bias-correction term.

In this simple example, a proposed bias-corrected estimator is given by subtracting the

bias-correction term δ̂ from an original biased estimator β̂.

τ̂BC(dH , dL) ≡ (β̂ − δ̂)× (dH − dL). (11)

This bias-corrected estimator is unbiased for the ACDE for the treated (Theorem 2 in the next

subsection). Note that when the assumption of no omitted confounders holds, the expected

value of δ̂ is zero, meaning no bias correction.

To understand an assumption necessary for this bias-corrected estimator, I rely on the

causal DAG in Figure 1 (b). As one concrete example, consider the study of hate crime

diffusion and suppose we fail to observe the unemployment rate. Variable G in the causal

DAG can represent this unemployment rate.

To correct bias due to this omitted unemployment rate, we need two parametric assump-

tions. First, the effect of the unemployment rate on the incidence of hate crimes is the same

at time t and t + 1. In the causal DAG, this assumption requires that the effect of G2 on

Y22 be the same as the effect of G1 on Y21. Although this assumption is stronger than the

time-invariant causal structure required for stationary DAGs (Definition 2), social scientists

often assume this type of time-invariant effects, especially when time intervals are short.

Second, we need to assume that association between the incidence of hate crimes in neigh-

borhoods (treatment) and the unemployment rate at time t is the same as the one between

the treatment and the unemployment rate at time t+ 1. In the causal DAG, this assumption

implies that the association between G2 and Y11 is the same as the one between G1 and Y11.

This assumption substantively means the stability of omitted confounder G. When the unem-

ployment rate is stable over two time periods, G1 = G2, this second assumption holds. When

we measure the incidence of hate crimes every month rather than every year, these necessary

assumptions might be more tenable.

4.2 Identification with A Bias-Corrected Estimator

In this subsection, I provide a general theoretical result underlying the proposed bias-corrected

estimator. I emphasize the connection between the proposed bias-corrected estimator and the

difference-in-difference estimator (Card and Krueger, 1994).
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I begin by defining the average causal diffusion effect for the treated (ACDT). I will show in

Theorem 2 that the proposed bias-corrected estimator is unbiased for the ACDT. The formal

definition is given as follows.

τ d
H

t+1(d
H , dL) ≡ E[Yi,t+1(d

H)− Yi,t+1(d
L) | Dit = dH ]. (12)

This is the average causal diffusion effect for units who received the higher level of the treat-

ment. This quantity could represent the causal diffusion effect of hate crimes for counties in

a higher risk neighborhood, i.e., dH% of neighboring counties had hate crimes in month t.

Without loss of generality, I divide a control set into three types of variables,

C ≡ {Xi,t+1,Vi,t+1,Zi},

where (1) Xi,t+1, the time-dependent variables that are descendants of Yit, (2) Vi,t+1, the

time-dependent variables that are not descendants of Yit, and (3) Zi, the time-independent

variables. Then, I can write a corresponding placebo set as

CP ≡ {Xit,Vi,t+1,Vit,Zi, {Yj,t−1}j∈Ni
}.

Using this notation, I introduce a general bias-corrected estimator. It subtracts bias de-

tected by the proposed placebo test from an estimator that we would use under the no omitted

confounders assumption.

Definition 3 (A Bias-Corrected Estimator)

A bias-corrected estimator τ̂BC is defined as the difference between two estimators τ̂Main and

δ̂Placebo.

τ̂BC ≡ τ̂Main − δ̂Placebo (13)

where

τ̂Main ≡
∫ {

Ê[Yi,t+1 | Dit = dH ,Xi,t+1,C
B]− Ê[Yi,t+1 | Dit = dL,Xi,t+1,C

B]
}
dFXi,t+1,CB |Dit=dH (x, c),

δ̂Placebo ≡
∫ {

Ê[Yit | Dit = dH ,Xit,C
B]− Ê[Yit | Dit = dL,Xit,C

B]
}
dFXi,t+1,CB |Dit=dH (x, c),

with CB ≡ {Vi,t+1,Vit,Zi, {Yj,t−1}j∈Ni
}. Ê[·] is any unbiased estimator of E[·], and re-

searchers can use regression, weighting, matching or other techniques to obtain such an un-

biased estimator. Note that both estimators are marginalized over the same conditional

distribution FXi,t+1,CB |Dit=dH (x, c).
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This bias-corrected estimator consists of two parts, τ̂Main and δ̂Placebo. The first part is an

estimator unbiased for the ACDT under the no omitted confounders assumption. However,

τ̂Main suffers from bias when this identification assumption is violated. The purpose of the

second part δ̂Placebo is to correct this bias. It is closely connected to the proposed placebo test;

when the assumption of no omitted confounders holds, E[δ̂Placebo] = 0 and there is no bias

correction. When the assumption is instead violated, δ̂Placebo serves as an estimator of the bias.

I rely on V̂ar(τ̂Main) + V̂ar(δ̂Placebo) as a conservative variance estimator of the bias-corrected

estimator given that τ̂Main and δ̂Placebo are often positively correlated. In the next subsection,

I investigate under what assumptions δ̂Placebo can correct bias for τ̂Main.

Assumption and Identification

Here, I propose a simple parametric assumption under which the proposed bias-corrected es-

timator is unbiased for the ACDT. I begin by defining an unobserved confounder U such that

the no omitted confounder assumption holds conditional on Ui,t+1 and the original control

set C, i.e., Yi,t+1(d
L) ⊥⊥ {Yjt}j∈Ni

| Ui,t+1,C. For simpler illustrations, I assume here that

this Ui,t+1 is a descendant of Yit (general results are in Appendix D). Theorem 1 then im-

plies that observed simultaneous outcomes are independent conditional on Uit and CP , i.e.,

Yit ⊥⊥ {Yjt}j∈Ni
| Uit,C

P .

With this setup, I can show that the bias correction requires a parametric assumption that

the effect and imbalance of unobserved confounders are constant over time. This assumption

is an extension of the stationary DAGs (Definition 2): while the stationary DAGs only require

that the existence of causal relationships among outcomes and confounders be time-invariant,

this additional parametric assumption requires that some of such causal relationships should

have the same effect size over time. The formal statement is given below.

Assumption 3 (Time-Invariant Effect and Imbalance of Unobserved Confounder)

1. Time-invariant effect of unobserved confounder U : For all u1, u0,x and c,

E[Yi,t+1(d
L)|Ui,t+1 = u1,Xi,t+1 = x,CB = c]− E[Yi,t+1(d

L)|Ui,t+1 = u0,Xi,t+1 = x,CB = c]

= E[Yit(d
L)|Uit = u1,Xit = x,CB = c]− E[Yit(d

L)|Uit = u0,Xit = x,CB = c].

2. Time-invariant imbalance of unobserved confounder U : For all u,x and c,

Pr(Ui,t+1 ≤ u | Dit = dH ,Xi,t+1 = x,CB = c)− Pr(Ui,t+1 ≤ u | Dit = dL,Xi,t+1 = x,CB = c)

= Pr(Uit ≤ u | Dit = dH ,Xit = x,CB = c)− Pr(Uit ≤ u | Dit = dL,Xit = x,CB = c).

Assumption 3.1 requires that the effect of unobserved confounders on the potential outcomes

be stable over time. This assumption is more plausible when we can control for a variety
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of observed time-varying confounders Xi,t+1 and Xit. However, this assumption might be

violated when the change in the effect of U is quick and cannot be explained by observed

covariates X. Assumption 3.2 requires that the imbalance of unobserved confounders be

stable over time. In other words, the strength of association between the treatment variable

and unobserved confounders is the same at time t and t+ 1. Importantly, it does not require

that the distribution of confounders is the same across different treatment groups. Instead, it

requires that the difference between treatment groups be stable over time.

In practice, both assumptions are more likely to hold when the interval between time t and

t+ 1 is shorter because Ui,t+1 ≈ Uit and Xi,t+1 ≈ Xit. In particular, when all confounders are

time-invariant between time t and t+1, Assumption 3.2 holds exactly. Even when confounders

are time-varying, researchers can make these assumptions more plausible by adjusting for

observed time-varying confounders Xi,t+1 and Xit.

In a special case where there is no descendant of Yit in the control set, i.e., Xi,t+1 = Xit = ∅,
Assumption 3 is equivalent to the parallel trend assumption and the proposed bias-corrected

estimator in Equation (13) is equal to the difference-in-difference estimator (Card and Krueger,

1994; Angrist and Pischke, 2008). By allowing for time-varying confounders, Assumption 3

extends the parallel trend assumption. It is also closely connected to the change-in-change

method (Athey and Imbens, 2006; Sofer et al., 2016). Specifically, the assumption of the

time-invariant imbalance (Assumption 3.2 in this paper) is a simple extension of Assumption

3.3 in Athey and Imbens (2006).

The theorem below shows that under Assumption 3, the bias-corrected estimator is unbi-

ased for the ACDT.

Theorem 2 (Identification with A Bias-Corrected Estimator) Under Assumptions 1

and 3, a bias-corrected estimator in Equation (13) is unbiased for the ACDT.

E[τ̂BC] = τ d
H

t+1(d
H , dL).

Proof is in Appendix D. It is also true that this estimator is unbiased for the ACDT when

the no omitted confounders assumption holds.

5 Empirical Analysis

In this section, using the proposed methods, I analyze two empirical questions that have served

as running examples throughout the paper. Although the two applications differ in important

ways – the hate crime study is about the spatial diffusion and the human rights norms study
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is about the network diffusion, I show that researchers can apply the proposed placebo test

and the bias-corrected estimator in the same way to both problems.

5.1 Spatial Diffusion of Hate Crimes against Refugees

Research across the social sciences has shown that many types of violence are contagious

(Wilson and Kelling, 1982; Skogan, 1990; Myers, 2000). In political science, the spatial dif-

fusion of conflicts has received great attention in particular (Hill and Rothchild, 1986; Lake

and Rothchild, 1998; Buhaug and Gleditsch, 2008). The central argument in these studies

is that one small act of violence can trigger another act of violence, which again induces an-

other, and can lead to waves of violence. Without taking into account how violent behaviors

spread across space, it is difficult to explain when, where and why some areas experience vio-

lence. Hate crime is not an exception (e.g., Koopmans and Olzak, 2004). For example, Braun

(2011) finds that racist violence spread across space in the Netherlands. He argues that the

diffusion dynamics might turn “violence from local deviance into a supra-local phenomenon”

and “seemingly tolerant regions can suddenly turn into xenophobic hotbeds” (Braun, 2011,

p. 753).

In this paper, I investigate the spatial diffusion of hate crimes against refugees, using a data

set from Germany documented in Benček and Strasheim (2016) and expanded by Dancygier,

Egami, Jamal, and Rischke (2018). Over the last few years, Germany has experienced a

record influx of refugees, and at the same time, the number of hate crimes against refugees

has increased dramatically. Figure 3 (a) reports the total number of physical attacks against

refugees in each month, from the beginning of 2015 to the end of 2016. While there were

about 15 hate crimes on average in each month of 2015, this number rose to more than 40 in

2016, a close to 200% increase. Where do we see this massive increase and why? Figure 3 (b)

presents the spatial patterns of physical attacks over the two years.

Two empirical patterns are worth noting. First, hate crimes are spatially clustered in East

Germany. Second, the number of counties that experience hate crimes grows over time. This

dynamic spatial pattern is consistent with the spatial diffusion theory which argues that hate

crimes diffuse from one county to another spatially proximate county over time (Myers, 2000;

Braun, 2011). Indeed, Jäckle and König (2016) recently found that the incidence of hate

crimes in one county predicts that of hate crimes in its spatially proximate counties using the

data from Germany in 2015.

However, it is challenging to estimate the causal impact of this spatial diffusion process be-

cause there exist potential concerns of contextual confounding: many unobserved confounders
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Figure 3: Temporal and Spatial Patterns of Hate Crimes in Germany. Note: The left figure

shows the number of physical attacks in each month from the beginning of 2015 to the end of 2016.

In the middle and right figures, I show the number of physical attacks in each county in 2015 and

2016, respectively. Each of 402 counties is colored in white, blue, orange, or red if the number of

hate crimes in a given year is less than or equal to 1, 5, 10, or greater than 10, respectively.

can be spatially correlated. For example, the number of refugees in each county increased

substantially during this period and is also spatially correlated. Even if researchers collect

a long list of covariates, it is difficult to assess whether a selected set of control variables is

sufficient for removing contextual confounding. To address this concern over potential bias, I

rely on the proposed methods: the placebo test and the bias-corrected estimator.

First, I estimate the average causal diffusion effect (ACDE) on the incidence of hate crimes.

In contrast to some existing studies (Braun, 2011; Jäckle and König, 2016), I find that the

spatial diffusion effect is small when averaging over all counties. By removing contextual

confounding that previous studies have suffered from, the analysis in this paper avoids the

overestimation of the causal diffusion effect. Then, I extend this analysis by considering types

of counties that are more susceptible to the diffusion of hate crimes. This further investigation

of heterogeneous causal effects shows that the spatial diffusion effect is large only for counties

that have a higher proportion of school dropouts. This finding suggests that the spatial

diffusion of hate crimes is concentrated in areas with low educational performance. This is

consistent with rich qualitative evidence that hate crime is often a problem of young people

(Green et al., 2001).

Setup

Data on hate crimes come from a project, Mut gegen rechte Gewalt (courage against right-wing

violence), by the Amadeu Antonio Foundation and the weekly magazine Stern, which has been
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documenting anti-refugee violence in Germany since the beginning of 2014. The data collection

is based on a wide range of sources, including newspaper articles, press releases by the German

police, and parliamentary interpellations that can retrieve specific categories of the official hate

crime data from the Federal Criminal Police Office in Germany (Bundeskriminalamt, BKA).

In particular, this project documents four different types of hate crimes against refugees

and refugee housing: physical attacks, arson attacks, other attacks on refugee housing, and

demonstrations. This data source has been recently analyzed by several papers (e.g., Benček

and Strasheim, 2016; Jäckle and König, 2016). The dataset I analyze in this empirical analysis,

compiled by Dancygier, Egami, Jamal, and Rischke (2018), extends this data source on hate

crimes by merging in other variables, such as the number of refugees, the population size, a

proportion of school dropouts and unemployment rates, collected from the Federal Statistical

Office in Germany.

As one of the most well-studied outcomes in the literature of ethnic violence, I focus on

physical attacks as the main dependent variable. Note that a definition of physical attacks in

this data set focuses on attacks against refugees and it does not include attacks on supporters

of refugees or other racially motivated attacks. Formally, I define the outcome variable Yit

to be binary, taking the value 1 if there exists any physical attack against refugees at county

i in month t, and taking the value 0 otherwise. The outcomes are defined for 402 counties

in Germany every month from the beginning of 2015 to the end of 2016. Averaging over all

counties in Germany during this period, the sample mean of the outcome variable is 6.4%.

This means that 6.4% of counties experienced at least one physical attack in a typical month.

In Saxony, a state with the largest number of hate crimes, the sample mean of the outcome

variable is 34%. As robustness checks, I also investigate ordinal outcomes and weekly data in

Appendix E.3. Results are similar to those presented below.

I use a distance matrix to encode the physical proximity between counties. In particular,

I construct an initial distance matrix W̃ using an inverse of the straight distance between

counties i and j as W̃ij. I then row-standardize the initial matrix W̃ and obtain a final

distance matrix W. For the outcome variable in month t + 1, the treatment variable is

defined to be Dit ≡W>
i Yt, the weighted proportion of neighboring counties that experience

the incidence of physical attacks in month t. The first causal quantity of interest is the ACDE,

which quantifies how much the probability of having hate crimes changes due to the increase

in the proportion of neighboring counties that have experienced hate crimes last month.

To illustrate the use of a placebo test and a bias-corrected estimator, I consider five different

sets of control variables in order. Analyzing these five sets step by step, I show how researchers
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can remove biases in each step. As the first set of control variables, I include one-month lagged

dependent and treatment variables. I also adjust for basic summary statistics of Wi, i.e., the

number of neighbors and variance of Wi, in order to compare observations with similar spatial

characteristics. As discussed in Figure 1, these lagged variables and basic summary statistics

of the spatial distance are sufficient for the identification if the spatial diffusion is the only

mechanism through which neighboring counties exhibit similar outcomes. Then, as the second

set of control variables, I add two-month lagged dependent variables to see whether adjusting

for a longer history of past outcomes can reduce bias (e.g., Christakis and Fowler, 2013; Eckles

and Bakshy, 2017). The third set of control variables add state fixed effects. Although the

state fixed effects are often excluded from existing studies of hate crimes in Germany (e.g.,

Braun and Koopmans, 2009; Jäckle and König, 2016), I will show how much these fixed

effects help remove biases. Then, the fourth set adds a list of contextual variables related to

the number of refugees, demographics, education, general crimes, economic indicators, and

politics. Finally, the fifth set controls for the time trend using third-order polynomials.

I conduct a placebo test by deriving a placebo set for each of the specified five control sets.

Following Equation (5), I add lags of time-dependent control variables and the treatment

variable and then remove those affected by the placebo outcome. I provide details of the five

control sets and the corresponding placebo sets in Appendix E.1.

Estimation of the Average Causal Diffusion Effect

To estimate the ACDE, I rely on a simple parametric model. I use the following logistic

regression to model the main outcome variable Yi,t+1 with the treatment variable and each of

the five control sets.

logit(Pr(Yi,t+1 = 1 | Dit,C)) = α + βDit + γ>C, (14)

where Dit is the treatment variable and C is a specified set of control variables. Under the

assumption of no omitted confounders, the difference in the predicted probabilities of Yi,t+1

underDit = dH andDit = dL serves as an estimator for the ACDE. In particular, I estimate the

ACDE that compares the following two treatment values; dH = 27%, the treatment received by

the average counties in Saxony (a state with the largest number of hate crimes) and dL = 0%,

none of the neighbors experiencing hate crimes (common for safe areas in West Germany).

Formally, τ̂ ≡
∫
{P̂r(Yi,t+1 = 1 | Dit = 0.27,C)− P̂r(Yi,t+1 = 1 | Dit = 0,C)}dFC(c).

To assess the no omitted confounders assumption, I estimate the following logistic regres-

sion.

logit(Pr(Yit = 1 | Dit,C
P )) = α0 + ρDit + γ>0 CP , (15)
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Figure 4: Placebo Tests, Main Estimates, and Bias-Corrected Estimates of the ACDE.
Note: Figures (a), (b) and (c) present results from the placebo tests, estimates of the ACDE under

the no omitted confounders assumption, and estimates from bias-corrected estimators with 95%

confidence intervals, respectively. C1, C2, C3, C4, and C5 refer to the five different control sets.

Figure (a) shows that while the first four sets of control variables are not sufficient, the fifth set

successfully adjusts for confounders. Focusing on the fifth control set, which produces a placebo

estimate close to zero, a point estimate of the ACDE in Figure (b) is smaller than 1 percentage

point and its 95% confidence interval covers zero. Figure (c) shows that bias-corrected estimates are

similar regardless of the selection of control variables and they all cover a point estimate from the

most credible fifth control set.

where Yit is the placebo outcome and CP is a placebo set corresponding to the control set

C. When the no omitted confounders assumption holds, Theorem 1 implies that ρ = 0. I

use the difference in the predicted probabilities of Yit under Dit = dH and Dit = dL as a test

statistic of the placebo test. Formally, δ̂ ≡
∫
{P̂r(Yit = 1 | Dit = 0.27,CP ) − P̂r(Yit = 1 |

Dit = 0,CP )}dFCP (cP ).

Figures 4 (a) and (b) present results from the placebo tests (Equation (15)) as Placebo

Tests and estimates from the main model (Equation (14)) as Main Estimates with 95% con-

fidence intervals, respectively. All standard errors are clustered at the state level. C1, C2,

C3, C4, and C5 refer to the five different control sets I introduced before. When a given

set of control variables satisfies the no omitted confounders assumption, estimates from the

placebo tests δ̂ should be close to zero. Figure 4 (a) shows that while the first four sets of

control variables are not sufficient, the fifth set (C5) successfully adjusts for confounders; a

point estimate is close to zero and its 95% confidence interval covers zero. It is not enough to

control for lagged dependent variables and contextual variables. It turns out to be critical to
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control for the time trend.

On the basis of these results from the placebo tests, I can now investigate estimates of

the ACDE from the main model in Figure 4 (b). For the first two cases (C1 and C2),

main estimates are as large as 5 percentage points, but the placebo tests suggest that these

estimates are heavily biased. Similarly, while the next two cases show point estimates of

around 2 percentage points, they are also likely to be biased. When we focus on the fifth

control set, which produces a placebo estimate close to zero, a point estimate of the ACDE is

smaller than 1 percentage point, and its 95% confidence interval covers zero. The comparison

between this more credible estimate and the one from the fourth set shows that an estimate

of the ACDE can suffer from 100% bias by missing one variable. This demonstrates the

importance of bias detection in causal diffusion analysis.

Although the proposed placebo tests suggest that the fifth control successfully adjusts for

relevant confounders in this example, it is often infeasible to find such control sets in many

other applications. To address these common scenarios, I now examine whether researchers

could obtain similar results using a bias-corrected estimator even with control sets that reject

the null hypothesis of the placebo test.

Figure 4 (c) shows that bias-corrected estimates are similar regardless of the selection of

control variables and they all cover the most credible point estimate from the fifth control

set. Even though the proposed placebo test detected a large amount of bias, researchers can

obtain credible estimates by correcting the biases in this example.

What do these results tell us? In contrast to some existing studies (Braun, 2011; Jäckle

and König, 2016), this analysis shows that the ACDE on the incidence of hate crimes is small

when averaging over all counties in Germany. In the next subsection, I show that the spatial

diffusion of hate crimes is concentrated among a small subset of counties that have a higher

proportion of school dropouts.

Heterogeneous Diffusion Effects by Education

Now, I extend the previous analysis by considering types of counties that are more susceptible

to the diffusion of hate crimes. In particular, I examine the role of education. Given rich

qualitative and quantitative evidence that hate crime is often a problem of young people, it is

critical to take into account one of the most important institutional contexts around them, i.e.,

schooling. There are at least three mechanisms through which education can reduce the risk of

hate crimes. First, education increases economic returns to current and future legitimate work,

thereby raising the opportunity cost of committing hate crimes (e.g., Lochner and Moretti,

2004). Second, education may change psychological costs associated with hate crimes (e.g.,
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Frindte et al., 1996). More educated people tend to have lower levels of ethnocentrism and

place more emphasis on cultural diversity (Hainmueller and Hiscox, 2007). Finally, some

scholars emphasize that schooling has incapacitation effects – keeping adolescents busy and

off the street, thereby directly reducing the chances of committing crimes (Jacob and Lefgren,

2003).

Building on the literature above, I investigate whether local educational contexts con-

dition the spatial diffusion dynamics of hate crimes. In this paper, I use a proportion of

school dropouts without a secondary school diploma as a measure of local educational perfor-

mance. To better disentangle the education explanation, I analyze East Germany and West

Germany separately because they have substantially different distributions of proportions of

school dropouts (counties in East Germany have higher proportions of school dropouts; see

Appendix E.2 for details). Here I report results from East Germany and provide those for

West Germany in Appendix E.2. In particular, I estimate the conditional average causal dif-

fusion effects (conditional ACDEs) for counties that have high and low proportions of school

dropouts without a secondary school diploma. I use 9% as a cutoff for high and low propor-

tions of school dropouts, which is approximately the median value in East Germany. I add

an interaction term between the treatment variable and this indicator variable to the origi-

nal model in Equation (14) and to the original placebo model in Equation (15). Although

this investigation of heterogeneous effects is observational in nature as in a typical subgroup

analysis, results are consistent with the education explanation.

Figure 5 presents results for the conditional ACDE for counties that have a higher pro-

portion of school dropouts. Similar to the case of the ACDE estimation, Figure 5 (a) shows

strong concerns of biases in the first four sets of control variables. Even though a 95% confi-

dence interval of the fourth estimate covers zero, its point estimate is far from zero (around

4 percentage points). In contrast, the placebo test suggests that the fifth control set adjusts

for relevant confounders where a placebo estimate is close to zero.

Based on results from the placebo tests, I examine estimates from the main model in

Figure 5 (b). The first four sets, likely to be biased, exhibit large point estimates, larger

than 10 percentage points. More interestingly, even with the most credible fifth control set, a

point estimate is as large as 6 percentage points and is statistically significant. This effect size

is substantively important given that it is about one-fourth of the sample average outcome

in this subset (26%). Bias-corrected estimates in Figure 5 (c) confirm that the conditional

ACDE for counties with a higher proportion of school dropouts is large and similar regardless

of the selection of control sets.
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Figure 5: Placebo Tests, Main Estimates, and Bias-Corrected Estimates of the conditional
ACDE for counties with a high proportion of school dropouts. Note: Figures (a), (b) and

(c) present results from the placebo tests, estimates of the conditional ACDE under the no omitted

confounders assumption, and estimates from bias-corrected estimators with 95% confidence intervals,

respectively. C1, C2, C3, C4, and C5 refer to the five different control sets. Figure (a) shows that

while the first four sets of control variables are not sufficient, the fifth set successfully adjusts for

confounders. Focusing on the most credible fifth control set, a point estimate of the conditional

ACDE in Figure (b) is as large as 6 percentage points and is statistically significant at the 0.05

level. Figure (c) shows that bias-corrected estimates are similar regardless of the selection of control

variables.

When I estimate the conditional ACDE for counties that have a lower proportion of school

dropouts, effects are close to zero and their 95% confidence intervals cover zero, as the ed-

ucation hypothesis expects (see Appendix E.2). Causal diffusion effects are also precisely

estimated to be zero in West Germany, where proportions of school dropouts are much lower

than East Germany. This additional analysis suggests that the spatial diffusion dynamics of

hate crimes operate only in places with low educational performance.

5.2 Network Diffusion of Human Rights Norms

In political science, diffusion theories have played a central role in explaining a wide range

of phenomena. Topics include regime transitions (Huntington, 1991; Starr, 1991; Pevehouse,

2002; Gleditsch and Ward, 2006), conflicts (Lake and Rothchild, 1998; Buhaug and Gleditsch,

2008; Gleditsch et al., 2008), foreign economic policies (Simmons and Elkins, 2004; Simmons

et al., 2006), election monitoring (Hyde, 2011) and capital taxation (Cao, 2010). In particular,

scholars of the human rights politics have examined the international diffusion of human rights

norms from a variety of aspects (e.g., Keck and Sikkink, 1998).

35



Recently, by extending an influential work by Johnston (2001), Greenhill (2010, 2016)

takes this human rights literature in a new direction by considering the socialization effect

of intergovernmental organizations (IGOs). He emphasizes that the IGOs offer social forums

in which high-level policymakers interact with each other and transmit human rights norms

to fellow IGO members. Consistent with this main theory, he finds that human rights per-

formance, measured by the Personal Integrity Rights (PIR) score, is strongly associated with

those of the IGO partners even after controlling for a number of domestic and international-

level variables. However, as in a typical network diffusion analysis, it is essential to address

potential concerns over homophily bias in order to establish causal claims. Because similar

types of states are more likely to join similar types of IGOs, it is possible to observe similar

levels of human rights performance among IGO partners even without any network diffu-

sion. Unless researchers take this homophily story into account, they could overestimate the

network diffusion effect.

Recognizing this potential problem, Greenhill (2016) adjusts for both spatial proximity and

cultural similarity between states in addition to a list of conventional control variables, such

as population size and GDP. In this section, I apply the proposed methods and evaluate the

confounder selection of the original study. Although including spatial and cultural connections

reduces bias, the proposed placebo test reveals that a large amount of confounding remains.

When adjusting for time trends and enough lags, an estimate of the ACDE is close to zero,

in contrast to the original findings. The proposed bias-corrected estimator also confirms this

null finding. By employing the proposed methods, we can avoid the overestimation of causal

diffusion effects. I emphasize that this subsection focuses on only one of the main models

in the important work (Greenhill, 2016) and hence, it is plausible that human rights norms

diffuse in a way, not captured by the model discussed here. One advantage of the proposed

approach is that it can also help researchers who might incorporate different network channels

or investigate heterogeneous treatment effects.

Setup

In this section, I use the replication data (Greenhill, 2015), which covers the period from 1985

to 2005. Using the Correlates of War 2 International Governmental Organizations Data Set,

version 2.3 (Pevehouse et al., 2004), Greenhill (2016) measures an original IGO-based network

between states. In particular, Greenhill (2016) views the IGO network as a bipartite network

in which there are two types of nodes (states and IGOs) and edges exist only between states

and IGOs. This new approach explicitly incorporates his theory that states are interacting

with each other through IGO memberships. Based on this bipartite network, Greenhill (2016)
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defines the strength of a direct tie from state j to state i as follows. First, define Iijt to be a

set of IGOs that both states i and j belong to in year t, and for each IGO k in this set Iijt,
compute the total number of members Nkt. Then, the strength of the direct tie from state j

to state i in year t is defined as

Wijt ≡
∑

k∈Iijt 1/(Nkt − 1)

Total number of IGOs that state i belongs to in year t
. (16)

This measure encodes several important intuitions. First, when two states share more mem-

berships, their tie is stronger because more states are in set Iijt. Second, when two states

share memberships in smaller IGOs (therefore, officials from two states potentially have more

interactions), their tie is stronger because Nkt is smaller. Finally, when state i belongs to

many IGOs, interactions in each IGO are less important and hence, the tie is weaker.

Greenhill (2016) argues that human rights performance can diffuse through this IGO-based

network. The main outcome, the PIR score, is denoted by Yit for state i in year t. For the

outcome variable in year t + 1, the treatment variable is defined to be Dit ≡ W>
itYt, the

weighted average of the PIR scores of state i’s fellow IGO members. This quantity is defined

as IGO Context in the original study. The main causal quantity of interest is the ACDE of the

PIR score over one year (see Table 3 in Chapter 3 of Greenhill (2016)). It quantifies how much

the level of human rights performance diffuse from IGO partners over time. More precisely,

the study asks: how much would the PIR score of a given state in year t + 1 change if its

fellow IGO members have higher PIR scores in year t?

I consider three different sets of control variables. As the first control set, I follow the

original analysis (Table 3 in Chapter 3 of Greenhill (2016)) and includes logged GDP per

capita, regime durability, population density, democracy, trade dependence, FDI dependence,

conflict, and a lagged dependent variable. As the second control set, I again follow Greenhill

(2016) and add two additional network measures, i.e., spatial proximity and cultural similarity

between states, to adjust for potential homophily bias. Finally, the third set controls for

year fixed effects and longer periods of the diffusion history, i.e., two- and three-year lagged

dependent and treatment variables, in addition to the original one-year lagged dependent

variable. I also include basic network characteristics, i.e., the number of neighbors and variance

of Wit. I provide details of the three control sets and the corresponding placebo sets in

Appendix F.

37



Models and Results

To estimate the ACDE, I use the following linear regression to model the main outcome

variable Yi,t+1 with the treatment variable and each of the three control sets.

E[Yi,t+1 | Dit,C] = α + βDit + γ>C, (17)

where Dit is the treatment variable and C is a specified set of control variables. Under the

assumption of no omitted confounders, β̂ is an unbiased estimator for the ACDE. Then, to

assess the no omitted confounders assumption, I estimate the linear regression model.

E[Yit | Dit,C
P ] = α0 + ρDit + γ>0 CP , (18)

where Yit is the placebo outcome and CP is a placebo set corresponding to the control set C.

When the no omitted confounders assumption holds, Theorem 1 implies that ρ = 0. I use ρ̂

as a test statistic of the placebo test. I also utilize the proposed bias-corrected estimator by

combining two regression models (Equations (17) and (18)). All standard errors are clustered

at the country level.

Figures 6 (a) and (b) present results from the placebo tests (Placebo Tests) and estimates

under the no omitted confounders assumption (Main Estimates) with 95% confidence intervals,

respectively. C1, C2, and C3 refer to the three control sets I explained above. Figure 6

(a) suggests that while the first two sets of control variables are not sufficient for removing

confounding, the last third set (C3) adjusts for relevant confounders. Although adjusting

for spatial proximity and cultural similarity (C2) slightly reduces bias compared to the first

control set (C1), it still suffers from a large amount of bias. As in the first application of the

hate crime diffusion, it is critical to adjust for the temporal dynamics (the third set, C3).

According to these results of the placebo tests, estimates from the first two control sets

(C1 and C2 in Figure 6 (b)) are likely to be biased. When we focus on the most credible third

set, a point estimate of the ACDE of the PIR score is close to zero with its 95% confidence

interval covering zero. This suggests that after removing biases of the first two estimates,

there is no statistical evidence for the ACDE of the PIR score.

Looking at estimates from the bias-corrected estimators in Figure 6 (c), two points are

worth noting. First, 95% confidence intervals for the second and third estimates cover zero,

confirming the null finding from main estimates. Second, and more importantly, bias-corrected

estimates are not as stable as those reported in the first application of the hate crime diffusion.

The bias-corrected point estimate from C1 differs from the one from C3 by about 0.4. This

instability is likely because the first control set C1 violates the assumption that the effect
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Figure 6: Placebo Tests, Main Estimates, and Bias-Corrected Estimates for the ACDE on
the Personal Integrity Rights (PIR) score. Note: Figures (a), (b) and (c) present results from the

placebo tests, estimates of the ACDE under the no omitted confounders assumption, and estimates

from bias-corrected estimators with 95% confidence intervals, respectively. C1, C2, and C3 refer to

the three different control sets. Figure (a) shows that while the first two sets of control variables are

not sufficient, the last third set successfully adjusts for confounders. Focusing on the most credible

third control set, a point estimate of the ACDE in Figure (b) is close to zero. Figure (c) shows that

the bias-corrected estimate from the first control set differs from the one from the most credible third

set. This is likely because the first control set violates the assumption that the effect and imbalance

of unobserved confounders are stable over time.

and imbalance of unobserved confounders are stable over time (Assumption 3). This result

suggests that scholars need to carefully evaluate the plausibility of Assumption 3 especially

when analyzing annual data.

6 Concluding Remarks

Spatial and network diffusion dynamics have been an integral part of many social science

theories. Given that spatial and network panel data have become increasingly common, it is

essential to develop methodologies to draw causal inference for diffusion effects. To address

pervasive concerns over contextual confounding and homophily bias, this paper introduces

a new class of stationary causal DAGs. By making use of the time-invariant structure of

stationary causal DAGs, I develop two statistical tools to facilitate credible causal diffusion

analysis. First, I propose a new statistical test that can detect a wide class of biases, including

contextual confounding and homophily bias. Then, I develop a difference-in-difference style

estimator that can directly correct biases under an additional parametric assumption. The
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proposed approach offers a simple way to assess and adjust for omitted variable bias, the

central challenge for causal diffusion analysis.

Using the proposed methods, I examined the spatial diffusion of hate crimes in Germany.

After removing upward bias in previous studies, I found that the average effect of spatial

diffusion is small, in contrast to recent quantitative analyses (Braun, 2011; Jäckle and König,

2016). The investigation of heterogeneous effects, however, revealed that the spatial diffusion

effect of hate crimes is large only in areas that have a high proportion of school dropouts,

which is consistent with qualitative evidence from Germany (e.g., Hagan et al., 1995). My

reanalysis of the norm diffusion study (Greenhill, 2016) detected a large amount of bias and

found little evidence of the network diffusion effect after correcting the bias. Both applications

demonstrate the large differences in substantive conclusions that can result from contextual

confounding and homophily bias. By directly accounting for these biases, the proposed placebo

test and bias-corrected estimator help researchers make more credible causal inference for

diffusion studies.

There are a number of possible future extensions. First, whereas I propose an extension of

the difference-in-difference estimator to causal diffusion analysis, future research should also

investigate how to incorporate into causal diffusion analysis other popular tools developed

for estimating the average treatment effect in panel data settings, such as synthetic control

methods (Abadie and Gardeazabal, 2003; Abadie et al., 2010), latent factor models (Bai, 2009;

Stewart, 2014; Xu, 2017), and matrix completion methods (Athey et al., 2017). Second, to

further disentangle different channels of diffusion effects, it is essential to incorporate mul-

tiple networks into the proposed framework. With this extension, researchers can analyze,

for example, micromechanisms of hate crime diffusion by estimating causal diffusion effects

through offline face-to-face networks and online social networks. Finally, although this paper

focuses on the causal diffusion effect of the first order lag, which is the main focus in many

applications, researchers might be interested in the longer term effect of diffusion, for example,

the network diffusion effect of international norms over decades. To analyze such long-term

diffusion processes, it is of interest to extend the proposed methods to a framework of the

marginal structural model (Robins et al., 2000).
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Jäckle, S. and König, P. D. (2016). The Dark Side of the German ‘Welcome Culture’: Inves-
tigating the Causes behind Attacks on Refugees in 2015. West European Politics , 40(2),
223–251.

Jacob, B. A. and Lefgren, L. (2003). Are Idle Hands the Devil’s Workshop? Incapacitation,
Concentration, and Juvenile Crime. American Economic Review , 93(5), 1560–1577.

Joffe, M. M. and Robins, J. M. (2009). Controlling the Future: Revised Assumptions and
Methods for Causal Inference with Repeated Measures Outcomes. Working Paper .

Johnston, A. I. (2001). Treating International Institutions as Social Environments. Interna-
tional Studies Quarterly , 45(4), 487–515.

44



Keck, M. E. and Sikkink, K. (1998). Activists beyond Borders: Advocacy Networks in Inter-
national Politics . Cornell University Press.

Koopmans, R. and Olzak, S. (2004). Discursive Opportunities and the Evolution of Right-
Wing Violence in Germany. American Journal of Sociology , 110(1), 198–230.

Lake, D. A. and Rothchild, D. S. (1998). The International Spread of Ethnic Conflict: Fear,
Diffusion, and Escalation. Princeton University Press.

Lauritzen, S. L. (1996). Graphical Models . Clarendon Press, Oxford.

Lipsitch, M., Tchetgen Tchetgen, E. J., and Cohen, T. (2010). Negative Controls: A Tool for
Detecting Confounding and Bias in Observational Studies. Epidemiology , 21(3), 383.

Lochner, L. and Moretti, E. (2004). The Effect of Education on Crime: Evidence from Prison
Inmates, Arrests, and Self-Reports. American Economic Review , 94(1), 155–189.

Lyons, R. (2011). The Spread of Evidence-Poor Medicine via Flawed Social-Network Analysis.
Statistics, Politics, and Policy , 2(1).

Manski, C. F. (1993). Identification of Endogenous Social Effects: The Reflection Problem.
The Review of Economic Studies , 60(3), 531–542.
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Appendix

A Causal Directed Acyclic Graphs: Review
In this paper, I use a causal directed acyclic graph and nonparametric structural equations to
represent causal relationships. Here, I review basic definitions and results. See Pearl (2009) for
a comprehensive review. Following Pearl (1995), I define a causal directed acyclic graph (causal
DAG) to be a set of nodes and directed edges among nodes such that the graph has no cycles
and each node corresponds to a univariate random variable. Each random variable is given
by its nonparametric structural equation. When there is a directed edge from one variable to
another variable, the latter variable is a function of the former variable. For example, in a
causal DAG in Figure 7 (a), four random variables (A,B,C,D) are given by nonparametric
structural equations in Figure 7 (b); A = fA(εA), B = fB(εB), C = fC(A,B, εC), and D =
fD(A,B,C, εD), where fA, fB, fC and fD are unknown nonparametric structural equations and
(εA, εB, εC , εD) are mutually independent errors. The node that a directed edge starts from is
called the parent of the node that the edge goes into. The node that the edge goes into is the
child of the node it comes from. If two nodes are connected by a directed path, the first node
is the ancestor of every node on the path, and every node on the path is the descendant of the
first node (Pearl, 2009). For example, node A is a parent of node C, and nodes C and D are
descendants of node B. The requirement that the errors be mutually independent essentially
means that there is no variable absent from the graph which, if included on the graph, would
be a parent of two or more variables.

The nonparametric structural equations are general – random variables may depend on any
function of their parents and variable-specific errors. They encode counterfactual relationships
between the variables on the graph by recursively representing one-step-ahead counterfactuals.
Under a hypothetical intervention setting A to a, the distribution of the variables B,C, and
D are then recursively given by the nonparametric structural equations with A = fA(εA)
replaced by A = a. Specifically, B = fB(εB), C = C(a) = fC(A = a,B, εC), and D = D(a) =
fD(A = a,B,C = C(a), εD) where C(a), D(a) are the counterfactual values of C and D when
A is set to a.

A

B

C

D

(a) A causal directed acyclic graph

A = fA(εA)

B = fB(εB)

C = fC(A,B, εC)

D = fD(A,B,C, εD)

(b) A structural equation model

Figure 7: An Example of Causal DAGs and SEMs

B Proof of Result 1

Under Assumption 2, Yi,t+1(d) ⊥⊥ Dit | C because Dit ≡W>
i Yt and C includes Wi. Hence,

τt+1(d
H , dL) =

∫
C

{
E[Yi,t+1(d

H) | C = c]− E[Yi,t+1(d
L) | C = c]

}
dFC(c)
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=

∫
C

{
E[Yi,t+1 | Dit = dH ,C = c]− E[Yi,t+1 | Dit = dL,C = c]

}
dFC(c),

where the first equality follows from the linearity of expectation and the rule of conditional
expectations, and the second from Assumptions 1 and 2.

C A Placebo Test

C.1 Proper Bias

Here, I define bias (i.e., the violation of the no omitted confounders assumption) to be proper
if the bias cannot be removed by simply changing the lag structure of control variables. I
provide a formal definition and then examples below.

Definition 4 (Proper Bias)
Suppose a control set C does not satisfy the no omitted confounders assumption (Assump-
tion 2). This violation of the no omitted confounders assumption, i.e., bias, is defined to be
proper if it satisfies the following condition.

If a control set C cannot block all back-door paths from {Yjt}j∈Ni
to Yi,t+1, there is at least

one back-door path that any subset of the following set cannot block.

{C,C(−1),C(+1), {Yj,t−1}j∈Ni
},

where C(−1) and C(+1) are a lag and a forward-lag of the time-dependent variables in C. A
control set C inducing no bias or proper bias is said to be proper.

Now, I examine Definition 4 in details. I consider two practical scenarios of proper bias. The
first scenario is that a control set suffers from bias due to omitted time-independent con-
founders. Since the bias comes from the omitted time-independent variable, the change in the
lag structure of existing control variables cannot adjust for it, i.e., this bias is proper. Ho-
mophily bias often fits into this category. For example, in the norm diffusion study (Greenhill,
2016), I discussed in Section 2.3 potential concerns about homophily bias due to unobserved
political culture, which is often stable over time. Additionally, in causal DAGs in Shalizi and
Thomas (2011) and O’Malley et al. (2014) as well as in Section 2.4 of this paper, the homophily
bias results from time-independent omitted variables. In many applications, homophily bias
is proper.

The second scenario is that a control set induces bias because it omits one type of time-
dependent confounders not only at one time period but at every time period. Since this
time-dependent confounder is not adjusted for at any time period, this bias is also proper.
Contextual confounding often falls into this category. For example, in the study of hate crime
diffusion, I examined in Section 2.3 possibilities of contextual confounding due to unobserved
economic policies. Here, researchers are mainly concerned that they miss such economic
policies entirely, not that they miss the variable at only one time period. As this example
shows, in practice, contextual confounding is often proper.

Although many important types of biases are proper, when does a control set suffer from
improper bias? It results from the misadjustment of the lag structure in control sets. For
example, in the study of hate crime diffusion, suppose that bias exists because a control set
omits a measure of economic conditions in July, but it includes the measure of economic
conditions in August. In this case, because we can remove this bias by modifying the lag
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structure, i.e., controlling for the measure of economic conditions in July in addition to the
one in August, this bias is not proper. When the lag-structure of time-dependent confounders
is complex, it is more likely to suffer from improper bias.

As shown by these examples, Definition 4 encompasses a wide class of biases. For example,
not only each of the two types but any mix of contextual confounding and homophily bias are
often proper. Importantly, bias is proper unless it results from the misadjustment of the lag
structure.

C.2 Proof of Theorem 1

C.2.1 Setup

Here, I provide some preliminary results useful for proving Theorem 1.

Lemma 2 (Equivalence between Back-Door Criteria and No Omitted Confounder
Assumption) For a pretreatment control set C, the following two statements hold.

1. If a set C satisfies the back-door criterion with respect to (Yi,t+1, {Yjt}j∈Ni
) in causal

DAG G, then Yi,t+1(d) ⊥⊥ {Yjt}j∈Ni
| C holds in every causal model inducing causal

DAG G (Pearl, 1995).

2. If Yi,t+1(d) ⊥⊥ {Yjt}j∈Ni
| C holds in every causal model inducing causal DAG G, then a

set C satisfies the back-door criterion with respect to (Yi,t+1, {Yjt}j∈Ni
) in causal DAG

G (Shpitser et al., 2012).

Based on Lemma 2, Yi,t+1(d) ⊥⊥ {Yjt}j∈Ni
| C is equivalent to no unblocked back-door paths

from {Yjt}j∈Ni
to Yi,t+1 with respect to C in causal DAG G. Additionally, based on Lemma 2,

Yit(d) ⊥⊥ {Yjt}j∈Ni
| CP is equivalent to no unblocked back-door paths from {Yjt}j∈Ni

to Yit
with respect to CP in causal DAG G. Under the sequential consistency assumption (Assump-
tion 1), Yit = Yit(d) for any d. Therefore, Yit ⊥⊥ {Yjt}j∈Ni

| CP is equivalent to no unblocked
back-door paths from {Yjt}j∈Ni

to Yit with respect to CP in causal DAG G.

C.2.2 Proof of Theorem 1: Bias → Dependence in Placebo Test

In this proof, I show that when set C cannot block all back-door paths from {Yjt}j∈Ni
to

Yi,t+1, set CP cannot block all back-door paths from {Yjt}j∈Ni
to Yit.

Step 1 (Proper Bias): Given the assumption that the set C is proper, set CP cannot block
all back-door paths from {Yjt}j∈Ni

to Yi,t+1 because CP is a subset of {C,C(−1),C(+1), {Yj,t−1}j∈Ni
}.

Step 2 (Set up the main unblocked back-door path to investigate): Let π be a back-
door path from {Yjt}j∈Ni

to Yi,t+1 that both C and CP and any subset of {C,C(−1),C(+1), {Yj,t−1}j∈Ni
}

cannot block. Without loss of generality, we assume that this unblocked back-door path starts
with an arrow pointing to Ykt where k ∈ Ni and it ends with an arrow pointing to Yi,t+1.

Step 3 (Case I. the last node of the unblocked back-door path is time-indepen-
dent): First, consider a case in which the last variable in an unblocked back-door path has
a directed arrow pointing to Yi,t+1 and time-independent. Let (Z, Yi,t+1) denote the last two
node path segment on π where Z is a time-independent variable and there exists a directed
arrow from Z to Yi,t+1. Note that we do not put any individual index to Z because the proof
holds for any index. Since this is an unblocked path, Z is not in CP and there is an unblocked
back-door path from Ykt to Z. Since Z is time-independent, there is a directed arrow from Z
to Yit by the definition of a stationary causal DAG (Definition 2). Therefore, set CP cannot
block this back-door path from Ykt to Yit.
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Step 4 (Case II. the last node of the unblocked back-door path is time-dependent):
Next, consider the case in which the last variable in an unblocked back-door path points to
Yi,t+1 and time-dependent. Let (B, Xt+1, Yi,t+1) denote the last three node path segment on π
where Xt+1 is a time-dependent direct cause of Yi,t+1. Note that we do not put any individual
index to Xt+1 because the proof holds for any index. Based on Lemma 3 presented below,
Xt, Xt+1 6∈ CP because Xt+1 6∈ C.

Step 4.1 (sub-Case: the second last node is time-independent): First, assume B is
time-independent. Then, because a causal DAG is stationary (Definition 2), Xt and B have
the same relationship as the one between Xt+1 and B. In addition, since there is an unblocked
path from Ykt to Xt+1 to through B, there exists an unblocked path from Ykt to Xt through
B. Given that there exists a directed arrow from Xt+1 to Yi,t+1, there exists a directed arrow
from Xt to Yit. Therefore, there is an unblocked back-door path from Ykt to Yit.

Step 4.2 (sub-Case: the second last node is time-dependent): Next, assume B is
time-dependent and therefore we use Bt+1. First, I show that whenever B is time-dependent,
then the directed arrow is always from Xt+1 to Bt+1. Suppose there is a directed arrow from
Bt+1 to Xt+1. If Bt+1 in CP , then this back-door is blocked (therefore, choose another π).
So, Bt+1 is not in CP . Therefore, we can collapse Bt+1 into Xt+1, meaning that if B is time
dependent, then the directed arrow is always from Xt+1 to Bt+1.

Now, suppose there is a directed arrow from Xt+1 to Bt+1. We know there exists an
unblocked path from Ykt to Xt+1 through Bt+1. Now, because Yit ← Xt → Xt+1 → Bt+1,
there is an unblocked back-door path from Ykt to Yit because the underlying causal DAG is
stationary. 2

Lemma 3 (Substep in Step 4 in Appendix C.2.2) Within the fourth step of the proof
above (Appendix C.2.2), Xt+1 6∈ C→ Xt, Xt+1 6∈ CP .

Proof First, I show that Xt, Xt+1, Xt+2 6∈ C because set C is proper. It is because if Xt or
Xt+2 are in C, then the lag adjustment of the control set C can block this path. If this path
is the only back-door path, then C is not proper. If there is another back-door path that any
subset of {C,C(−1),C(+1), {Yj,t−1}j∈Ni

} cannot block, choose it as π.
Next, I show that Xt, Xt+1 6∈ CP . There are three ways for a variable to be in the placebo

set CP . I discuss them in order. First, a variable can be in the placebo set because it was
already in the control set. We know Xt, Xt+1 6∈ C, so this option is not feasible. Second, a
variable can be in the placebo set because it is a lag of the original control variables. Given
that Xt+1, Xt+2 are not in the control set, this option is also not feasible. Finally, a variable
can be in the placebo set because it is a lag of the treatment variable. (a) It is important
to notice that Xt /∈ {Yj,t−1}j∈Ni

because Xt+1 /∈ {Yjt}j∈Ni
(i.e., the treatment cannot be the

last node of the unblocked back-door path). (b) Now, I verify Xt+1 /∈ {Yj,t−1}j∈Ni
. First, this

back-door path can be blocked by a subset of {C,C(−1),C(+1), {Yj,t−1}j∈Ni
}. If this back-door

is the only unblocked back-door, set C is not proper, therefore this is contradictory. If there
is another back-door path that both C and CP cannot block, choose it as π. 2

C.2.3 Proof of Theorem 1: No Bias → Independence in Placebo Test

Next, I prove that when set C can block all back-door paths from {Yjt}j∈Ni
to Yi,t+1, set CP

can block all back-door paths from {Yjt}j∈Ni
to Yit. I show the contraposition: when there

is a back-door path from {Yjt}j∈Ni
to Yit that set CP cannot block, set C cannot block all

back-door paths from {Yjt}j∈Ni
to Yi,t+1. Since C does not include any Des(Ykt), we know

CP also does not include any Des(Ykt). Also, by definition, CP does not include any Des(Yit).
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Therefore, without loss of generality, we can focus on unblocked back-door paths that start
with an arrow pointing to Ykt where k ∈ Ni and end with an arrow pointing to Yit.

Step 1 (Control Set cannot block all back-door paths to the Placebo outcome):
First, I show that when there is a back-door path from Ykt to Yit that set CP cannot block, set
C cannot block all back-door paths from Ykt to Yit. From set CP to set C, we need to (1) add
Des(Yit) and (2) remove C(−1) and {Yj,t−1}j∈Ni

. I show here that this process cannot block a
back-door path that set CP cannot block. For (1), see Lemma 4 presented below. For (2),
we first check whether removing Xt ∈ C(−1) can block a back-door path that set CP cannot
block. To begin with, we can remove Xt because Xt+1 ∈ C. Removing variables Xt can be
helpful if Xt is a collider or a descendant of a collider for a back-door path. However, if so,
Xt+1 is a descendant of a collider and it is in set C and therefore, removing Xt cannot block
any additional paths. Next, we need to check whether removing a variable B ∈ {Yj,t−1}j∈Ni

can block the back-door path that the set CP cannot block. Removing variable B can be
helpful if B is a collider or a descendant of a collider for a back-door path. If so, there is an
unblocked back-door path (with respect to CP ) that starts with an arrow pointing to B and
ends with an arrow pointing to Yit, i.e., B ← . . .→ Yit. Since B has a directed arrow pointing
to Ykt, removing B unblock a new back-door path from Ykt through B, which points to Yit.
Although this unblocked back-door path with respect to C is different from the unblocked
back-door path with respect to CP , the paths are the same after node B and therefore at
least the last three nodes are the same. Therefore, we can use π to be a back-door from Ykt
to Yit that both sets C and CP cannot block.

Step 2 (Case I: the last node of the unblocked back-door path is time-inde-
pendent): Consider the case in which the last two nodes are (Z → Yit) and Z is time-
independent. Then, since Z → Yi,t+1 from the stationarity (Definition 2), set C cannot block
this back-door.

Step 3 (Case II: the last node of the unblocked back-door path is time-dependent):
Next, consider the case in which the last two nodes are (Xt → Yit). Since Xt 6∈ CP and
Xt 6∈ Des(Yit), Xt, Xt+1 6∈ C. Therefore, set C cannot block Ykt ← · · ·Xt → Xt+1 → Yi,t+1. 2

Lemma 4 (Substep in Step 1 in Appendix C.2.3) Adding Des(Yit) cannot block a
back-door path from Ykt to Yit unblocked by set CP .

Proof Suppose controlling for Des(Yit) can block a back-door path from Ykt to Yit that
the original set CP cannot block. Since CP does not include any Des(Ykt) or Des(Yit), this
unblocked back-door path contains an arrow pointing to Yit.

Step 1 (Set up the main node B): At least one of Des(Yit) is a non-collider on this path
given that controlling for Des(Yit) can block this path. Let B be such a variable and focus on
one arrow pointing out from the node B.

Step 2 (Case I. Consider one side of the main node B): First, suppose this direction
leads to Yit. Then, since B is a Des(Yit), a directed path from node B to Yit cannot exist and
therefore, there must be a collider on this direction of the path. Since this collider is also in
Des(Yit) and therefore not controlled in the original CP , this back-door is blocked by set CP .

Step 3 (Case II. Consider the other side of the main node B): Next, consider the
direction that leads to Ykt. Then, since Yit is not a cause of Ykt, a directed path from node B
to Ykt cannot exist and therefore, there must be a collider on this direction of the path. Since
this collider is also in Des(Yit) and therefore not controlled in the original CP , this back-door
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is blocked by set CP . Hence, this is contradiction. This proves that controlling for Des(Yit)
cannot block a back-door path from Ykt to Yit that set CP cannot block. 2

D A Bias-Corrected Estimator

D.1 Proof of Theorem 2

Before proving Theorem 2, I demonstrate two useful lemmas here. First, I show that when
set {Ui,t+1,C} can block all back-door paths from {Yjt}j∈Ni

to Yi,t+1, {Ui,t+1,Xi,t+1,C
B} can

also block all back-door paths from {Yjt}j∈Ni
to Yi,t+1

Lemma 5

Yi,t+1(d
L) ⊥⊥ {Yjt}j∈Ni

| Ui,t+1,C =⇒ Yi,t+1(d
L) ⊥⊥ {Yjt}j∈Ni

| Ui,t+1,Xi,t+1,C
B (19)

Proof If I write out control set C using notations introduced in Section 4.2, the lemma can
be rewritten as

Yi,t+1(d
L) ⊥⊥ {Yjt}j∈Ni

| Ui,t+1,Xi,t+1,Vi,t+1,Zi

=⇒ Yi,t+1(d
L) ⊥⊥ {Yjt}j∈Ni

| Ui,t+1,Xi,t+1,Vi,t+1,Vit,Zi, {Yj,t−1}j∈Ni
.

First, note that all variables in set {Ui,t+1,Xi,t+1,Vi,t+1,Vit,Zi, {Yj,t−1}j∈Ni
} are neither af-

fected by the potential outcome at time t, Yi,t+1(d
L), nor affected by the treatment {Yjt}j∈Ni

.
The difference between the conditioning sets in the right- and left-hand sides is Vit and
{Yj,t−1}j∈Ni

. Including these variables can open back-door paths only when these variables are
colliders for these new back-door paths. However, because a descendant of Vit, Vi,t+1, is in
the conditioning set, it is contradictory if conditioning on Vit can open a new back-door path.
Additionally, because {Yj,t−1}j∈Ni

is a parent of the treatment {Yjt}j∈Ni
, it is contradictory

if conditioning on {Yj,t−1}j∈Ni
can open a new back-door path. Therefore, including Vit and

{Yj,t−1}j∈Ni
don’t open any back-door path, which completes the proof. 2

Next, I prove the key equality under Assumption 3.

Lemma 6

E[Yi,t+1(d
L) | Dit = dH ,Xi,t+1 = x,CB = c]− E[Yi,t+1(d

L) | Dit = dL,Xi,t+1 = x,CB = c]

= E[Yit(d
L) | Dit = dH ,Xit = x,CB = c]− E[Yit(d

L) | Dit = dL,Xit = x,CB = c].

Proof Under Assumption 3,∫
C
{E[Yi,t+1(d

L)|Ui,t+1 = u1,Xi,t+1 = x,CB = c]− E[Yi,t+1(d
L)|Ui,t+1 = u0,Xi,t+1 = x,CB = c]}

×{dFUi,t+1|Dit=dH ,Xi,t+1=x,CB=c(u1)− dFUi,t+1|Dit=dL,Xi,t+1=x,CB=c(u1)}

=

∫
C
{E[Yit(d

L)|Uit = u1,Xit = x,CB = c]− E[Yit(d
L)|Uit = u0,Xit = x,CB = c]}

×{dFUit|Dit=dH ,Xit=x,CB=c(u1)− dFUit|Dit=dL,Xit=x,CB=c(u1)}.

Now I analyze each side of the equation.∫
C
{E[Yi,t+1(d

L)|Ui,t+1 = u1,Xi,t+1 = x,CB = c]− E[Yi,t+1(d
L)|Ui,t+1 = u0,Xi,t+1 = x,CB = c]}
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×{dFUi,t+1|Dit=dH ,Xi,t+1=x,CB=c(u1)− dFUi,t+1|Dit=dL,Xi,t+1=x,CB=c(u1)}

=

∫
C
E[Yi,t+1(d

L)|Ui,t+1 = u1,Xi,t+1 = x,CB = c]

×{dFUi,t+1|Dit=dH ,Xi,t+1=x,CB=c(u1)− dFUi,t+1|Dit=dL,Xi,t+1=x,CB=c(u1)}

=

∫
C
E[Yi,t+1(d

L)|Dit = dH , Ui,t+1 = u1,Xi,t+1 = x,CB = c]dFUi,t+1|Dit=dH ,Xi,t+1=x,CB=c(u1)

−
∫
C
E[Yi,t+1(d

L)|Dit = dL, Ui,t+1 = u1,Xi,t+1 = x,CB = c]dFUi,t+1|Dit=dL,Xi,t+1=x,CB=c(u1)

= E[Yi,t+1(d
L)|Dit = dH ,Xi,t+1 = x,CB = c]− E[Yi,t+1(d

L)|Dit = dL,Xi,t+1 = x,CB = c],

where the first equality follows from the fact that E[Yi,t+1(d
L)|Ui,t+1 = u0,Xi,t+1 = x,CB = c]

does not include u1, the second equality comes from Lemma 5, and the final from the rule of
conditional expectations. Similarly,∫

C
{E[Yit(d

L)|Uit = u1,Xit = x,CB = c]− E[Yit(d
L)|Uit = u0,Xit = x,CB = c]}

×{dFUit|Dit=dH ,Xit=x,CB=c(u1)− dFUit|Dit=dL,Xit=x,CB=c(u1)}.
= E[Yit(d

L) | Dit = dH ,Xit = x,CB = c]− E[Yit(d
L) | Dit = dL,Xit = x,CB = c].

Taken together,

E[Yi,t+1(d
L) | Dit = dH ,Xi,t+1 = x,CB = c]− E[Yi,t+1(d

L) | Dit = dL,Xi,t+1 = x,CB = c]

= E[Yit(d
L) | Dit = dH ,Xit = x,CB = c]− E[Yit(d

L) | Dit = dL,Xit = x,CB = c].

2

Proof of the theorem Based on Lemma 6 and Assumption 1,

E[Yi,t+1(d
L) | Dit = dH ,Xi,t+1 = x,CB = c]

= E[Yi,t+1(d
L) | Dit = dL,Xi,t+1 = x,CB = c]

+E[Yit(d
L) | Dit = dH ,Xit = x,CB = c]− E[Yit(d

L) | Dit = dL,Xit = x,CB = c]

= E[Yi,t+1 | Dit = dL,Xi,t+1 = x,CB = c]

+E[Yit | Dit = dH ,Xit = x,CB = c]− E[Yit | Dit = dL,Xit = x,CB = c].

Therefore,

E[Yi,t+1(d
H)− Yi,t+1(d

L) | Dit = dH ]

=

∫ {
E[Yi,t+1(d

H) | Dit = dH ,Xi,t+1,C
B]− E[Yi,t+1(d

L) | Dit = dH ,Xi,t+1,C
B]
}
dFXi,t+1,CB |Dit=dH (x, c)

=

∫
E[Yi,t+1 | Dit = dH ,Xi,t+1,C

B]dFXi,t+1,CB |Dit=dH (x, c)

−
{
E[Yi,t+1 | Dit = dL,Xi,t+1 = x,CB = c]

+E[Yit | Dit = dH ,Xit = x,CB = c]− E[Yit | Dit = dL,Xit = x,CB = c]
}
dFXi,t+1,CB |Dit=dH (x, c)

=

∫ {
E[Yi,t+1 | Dit = dH ,Xi,t+1,C

B]− E[Yi,t+1 | Dit = dL,Xi,t+1,C
B]
}
dFXi,t+1,CB |Dit=dH (x, c)

−
∫ {

E[Yit | Dit = dH ,Xit,C
B]− E[Yit | Dit = dL,Xit,C

B]
}
dFXi,t+1,CB |Dit=dH (x, c).

2
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D.2 Other Cases

In Theorem 2, I consider cases in which Ui,t+1 is time-dependent and affected by the outcome
at time t. Now I study two other cases (1) when Ui,t+1 is time-dependent but is not affected by
the outcome at time t and (2) when unobserved confounder is time-independent Zi. For both
cases, Assumption 3 needs to be modified accordingly, although their substantive meanings
stay the same. The definition of the bias-corrected estimator is also the same. For case (1),

define Ũi ≡ (Ui,t+1, Uit) and for case (2), define Ũi ≡ Zi. Then, Assumption 3 is modified as
follows.

1. Time-invariant effect of unobserved confounder Ũ : For all u1, u0,x and c,

E[Yi,t+1(d
L) | Ũi = u1,Xi,t+1 = x,CB = c]− E[Yi,t+1(d

L) | Ũi = u0,Xi,t+1 = x,CB = c]

= E[Yit(d
L) | Ũi = u1,Xit = x,CB = c]− E[Yit(d

L) | Ũi = u0,Xit = x,CB = c].

2. Time-invariant imbalance of unobserved confounder Ũ : For all u,x and c,

Pr(Ũi ≤ u | Dit = dH ,Xi,t+1 = x,CB = c)− Pr(Ũi ≤ u | Dit = dL,Xi,t+1 = x,CB = c)

= Pr(Ũi ≤ u | Dit = dH ,Xit = x,CB = c)− Pr(Ũi ≤ u | Dit = dL,Xit = x,CB = c).

As in Assumption 3, the first condition requires that the effect of unobserved confounders on
the potential outcomes is stable over time. The second condition requires that the imbalance
of unobserved confounders is stable even after changing time-dependent confounders X. In
a special case where there is no descendant of Yit in the control set, i.e., Xi,t+1 = Xit = ∅,
the second condition always holds and the first condition is equivalent to the parallel trend
assumption necessary for the difference-in-difference design.
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D.3 Diagnostics with Observed Confounders

Since Assumption 3 is fundamental to a successful application of the bias-corrected estimator,
it is critical to assess its plausibility. Although I cannot directly test the assumption about
unobserved confounders, I propose to inspect whether the effect and imbalance of observed
confounders are stable over time. If not, it would call into question the assumption that the
effect and imbalance of unobserved confounders are time-invariant. This is similar to diag-
nostics in the regression discontinuity design where researchers investigate the continuity of
observed confounders to assess the plausibility of the continuity in the conditional expecta-
tion of potential outcomes (Imbens and Lemieux, 2008). See Cinelli and Hazlett (2018) for
limitations of this type of diagnostics with observed confounders.

To investigate the assumption of the time-invariant effect of U , I propose to test whether
the effect of each observed confounder is stable over time, conditional on other control vari-
ables. For the k th variable Xk, we can test

E[Yi,t+1|Xk
i,t+1 = x1,X

−k
i,t+1 = x̄, Dit = dL,CB = c]− E[Yi,t+1|Xk

i,t+1 = x0,X
−k
i,t+1 = x̄, Dit = dL,CB = c]

= E[Yit|Xk
it = x1,X

−k
it = x̄, Dit = dL,CB = c]− E[Yit|Xk

it = x0,X
−k
it = x̄, Dit = dL,CB = c],

where X−k is the observed confounders without the k th variable. One simple parametric
approach is to run two separate linear additive regressions, (1) Yi,t+1 on (Xk

i,t+1,X
−k
i,t+1, Dit,C

B)

and (2) Yit on (Xk
it,X

−k
it , Dit,C

B). Then, check whether a coefficient of Xk
i,t+1 from the first

regression is equal to that of Xk
it from the second one. When these two coefficients are similar

for all observed time-varying confounders, it provides suggestive evidence for the assumption
of the time-invariant effect of unobserved confounders (Assumption 3.1).

To inspect the assumption of the time-invariant imbalance of U , it is helpful to test whether
the imbalance of each observed confounder is stable over time. For the k th variable Xk, we
can test

Pr(Xk
i,t+1 ≤ x | Dit = dH ,X−ki,t+1 = x̄,CB = c)− Pr(Xk

i,t+1 ≤ x | Dit = dL,X−ki,t+1 = x̄,CB = c)

= Pr(Xk
it ≤ x | Dit = dH ,X−kit = x̄,CB = c)− Pr(Xk

it ≤ x | Dit = dL,X−kit = x̄,CB = c).

In practice, researchers can estimate two parametric models, one forXk
i,t+1 given (Dit,X

−k
i,t+1,C

B)

and the other for Xk
it given (Dit,X

−k
it ,C

B). Then, assess whether a coefficient of Dit from the
first model is equal to the one from the second model, i.e., whether association between the
treatment variable and confounders is stable over time. If we find that these two coefficients
are similar for all observed time-varying confounders, it suggests that the assumption of the
time-invariant imbalance of unobserved confounders (Assumption 3.2) is more likely to hold.
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E Empirical Analysis in Section 5.1

E.1 Control Sets and Placebo Sets

I investigate five different control sets to illustrate how to use the proposed placebo test and
bias-corrected estimator. Table 1 describes types of variables I use for those five control
sets and their corresponding placebo sets. The column of “Main model” indicates variables
used for control sets and the column of “Placebo model” indicates corresponding variables in
placebo sets.

Type Main Model Placebo Model

Outcome Physical Attackt+1 Physical Attackt

Treatment Physical Attackt in Neighbors Physical Attackt in Neighbors

A Control Set/A Placebo Set

Basic Variables Physical Attackt Physical Attackt−1

Physical Attackt−1 in Neighbors Physical Attackt−1,t−2 in Neighbors

the number of neighbors the number of neighbors

variance of Wi variance of Wi

Two-month Lags Physical Attackt−1 Physical Attackt−2

Contextual Variables (annual)

Refugee variables Total number of refugees Total number of refugees

Total number of foreign born Total number of foreign born

Population variables Population size Population size

Share of male inhabitants Share of male inhabitants

Crime variables Number of general crimes per 100,000 inhabitants Number of general crimes per 100,000 inhabitants

Percent of general crimes solved Percept of general crimes solved

Economic variables Number of newly registered business Number of newly registered business

Number of newly deregistered business Number of newly deregistered business

Number of insolvency Number of insolvency

per capita income per capita income

Number of employees with social security Number of employees with social security

Unemployment rate Unemployment rate

Education variables Share of school leavers Share of school leavers

without lower secondary education graduation without lower secondary education graduation

Political variables Turnout rate in 2013 Turnout rate in 2013

Vote share of extreme right and Vote share of extreme right and

populist right-wing parties in 2013 populist right-wing parties in 2013

Table 1: Five Control Sets and Placebo Sets: Spatial Diffusion of Hate Crimes.

The first control set (C1) includes variables from “Basic Variables”. The second control set
(C2) adds variables from “Two-month Lags” to the first control set. The third control set adds
state fixed effects to the second control set. The fourth control set adds all the variables from
“Contextual Variables”, which include variables on refugees, demographics, general crimes,
economic indicators, education, and politics. Note that these contextual variables are mea-
sured only annually. The final fifth set adds the time trend variable as third-order polynomials
to the fourth set.
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E.2 Conditional ACDEs by Education

Here, I present the distribution of proportions of school dropouts without a secondary school
diploma, separately for East Germany and West Germany. Because these distributions are
substantially different between the East and the West (as evident in Figure 8), I estimate
the conditional ACDE by proportions of school dropouts, separately for the East and the
West. Although it is important to note that this investigation of heterogeneous effects is
observational in nature, results are consistent with the education explanation.
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Figure 8: Distribution of Proportions of School Dropouts in East Germany and West Germany.
Note: For East Germany, I use 9% as a cutoff for high and low proportions of school dropouts, which

is approximately the median value in East Germany. For West Germany, I use 5% as a cutoff for high

and low proportions of school dropouts, which is approximately the median value in West Germany.

Next, I present the conditional ACDE for counties in East Germany with low proportions of
school dropouts. In contrast to Figure 5, estimates of the conditional ACDE are small.
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Figure 9: Results of the conditional ACDE (Low Proportion of School Dropouts, East). Note:

Figure (a) shows that the last fifth set produces the smallest placebo estimate. Focusing on this

fifth control set, a point estimate of the ACDE in Figure (b) is close to zero and its 95% confidence

interval covers zero. Figure (c) shows that bias-corrected estimates are similar regardless of the

selection of control variables and all of their 95% confidence intervals cover zero.
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Now, I present the conditional ACDEs for counties in West Germany with high and low
proportions of school dropouts. Given that proportions of school dropouts are lower in West
Germany, estimates of the conditional ACDEs are small, in contrast to Figure 5.
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Figure 10: Results of the conditional ACDE (High Proportion of School Dropouts, West).
Note: Figure (a) shows that the third, fourth and fifth sets produce small placebo estimates. Fo-

cusing on these sets, point estimates of the ACDE in Figure (b) are close to zero and sometimes

negative. Figure (c) shows that bias-corrected estimates are similar regardless of the selection of

control variables and all of their 95% confidence intervals cover zero.
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Figure 11: Results of the conditional ACDE (Low Proportion of School Dropouts, West).
Note: Figure (a) shows that all the sets produce small placebo estimates. This is partly because

there are few hate crimes in this area and hence, there is no variation in outcomes and treatments. In

addition, point estimates of the ACDE in Figure (b) are close to zero and sometimes negative. Figure

(c) shows that bias-corrected estimates are similar regardless of the selection of control variables and

all of their 95% confidence intervals cover zero.
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E.3 Robustness Checks

Here, I offer robustness checks for the main results in Section 5.1. I show the robustness with
respect to different time-scale (weekly) and a different outcome type (ordinal outcomes).

E.3.1 Weekly Data

I estimate the ACDE and the conditional ACDEs with weekly data. Two findings are worth
noting. First, the size of estimated effects is much smaller, which justifies the main analysis
with the monthly data because the sequential consistency assumption (Assumption 1) holds
approximately with monthly measures. Second, although estimates are smaller, substantive
findings stay the same, which suggests that the main findings are robust to different time-scale.
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Figure 12: Results of the ACDE with Weekly data. Note: Point estimates are smaller than those

presented in Figure 4, but the overall patterns stay the same. Figure (a) shows that the last fifth

set produces the smallest placebo estimate. Focusing on the fifth control set, a point estimate of the

ACDE in Figure (b) is close to zero and its 95% confidence interval covers zero. Figure (c) shows

that bias-corrected estimates are similar regardless of the selection of control variables.
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Figure 13: Results of the conditional ACDE (High Proportion of School Dropouts, East
Germany) with Weekly data. Note: Point estimates are smaller than those presented in Figure 5,

but the overall patterns stay the same. Figure (a) suggests that the last fifth set successfully adjusts

for relevant confounders. Focusing on the most credible fifth control set, a point estimate of the

conditional ACDE in Figure (b) is as large as 0.5 percentage points. Figure (c) shows that bias-

corrected estimates are similar regardless of the selection of control variables. Unlike the analysis

with the monthly data, their 95% confidence intervals cover zero.
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Figure 14: Results of the conditional ACDE (Low Proportion of School Dropouts, East Ger-
many) with Weekly data. Note: Point estimates are smaller than those presented in Figure 9, but

the overall patterns stay the same.
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Figure 15: Results of the conditional ACDE (High Proportion of School Dropouts, West
Germany) with Weekly data. Note: Point estimates are smaller than those presented in Figure 10,

but the overall patterns stay the same.
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Figure 16: Results of the conditional ACDE (Low Proportion of School Dropouts, West
Germany) with Weekly data. Note: Point estimates are smaller than those presented in Figure 11,

but the overall patterns stay the same.
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E.3.2 Count Data

I estimate the ACDE and the conditional ACDEs with ordinal outcomes. In Section 5.1, I
analyze the binary outcome, indicating whether there is at least one physical attack in a given
month. Here, I show that results are robust to a different outcome type. Because only 1.5%
of counties experience more than one and only 0.3% of counties experience more than two,
I focus on the three-level ordinal outcome: (1) no physical attack, (2) one physical attack,
and (3) more than or equal to two physical attacks. I report the ACDE on the probability
of having one physical attack relative to no physical attack (“One”) and on the probability
of having more than or equal to two physical attacks relative to no physical attack (“Two”).
I adjust for lagged outcomes, lagged treatments, the number of neighbors, variance of Wi,
state fixed effects, and the time trend variable as third-order polynomials.
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Figure 17: Results of the ACDE and the conditional ACDEs in East Germany with Count
data. Note: As presented in Figure 4, estimates for the ACDE are small. However, estimates of

the conditional ACDEs differ according to proportions of school dropouts. As presented in Figure 5,

estimates of the conditional ACDE for counties in East Germany with high proportions of school

dropouts are large. On the other hand, estimates of the conditional ACDE for counties in East

Germany with low proportions of school dropouts are small.
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Figure 18: Results of the ACDE and the conditional ACDEs in West Germany with Count
data. Note: For comparison, I again present estimates for the ACDE. As in Figures 10 and 11,

estimates of the conditional ACDEs are small in West Germany given that proportions of school

dropouts are substantially lower than in East Germany (see Figure 8).
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F Empirical Analysis in Section 5.2

F.1 Control Sets and Placebo Sets

I investigate three different control sets to illustrate how to use the proposed placebo test
and bias-corrected estimator. Table 2 describes what types of variables I use for those three
control sets and their corresponding placebo sets. The column of “Main model” indicates
variables used for control sets and the column of “Placebo model” indicates corresponding
variables in placebo sets.

The first control set (C1) includes variables from the original analysis. It includes logged
GDP per capita, regime durability, population density, democracy, trade dependence, FDI
dependence, conflict, and a lagged dependent variable. The second control set (C2) adds two
network measures, i.e., spatial proximity and cultural similarity between states. Finally, the
third set (C3) adjusts for year fixed effects and longer periods of the diffusion history, i.e.,
two- and three-year lagged dependent and treatment variables, in addition to basic network
characteristics.

Type Main Model Placebo Model
Outcome PIR score t+1 PIR score t

Treatment PIR score t of IGO partners PIR score t of IGO partners
A Control Set/A Placebo Set

Original Variables PIR scoret PIR scoret−1
logged GDP per capitat logged GDP per capitat−1
regime durabilityt regime durabilityt−1
population densityt population densityt−1
democracyt democracyt−1
trade dependencet trade dependencet−1
FDI dependencet FDI dependencet−1
conflictt conflictt−1

Alternative Network Measures spatial proximityt spatial proximityt,t−1
cultural similarityt cultural similarityt,t−1

Time-trend Variables year fixed effects year fixed effects
PIR scoret−1 PIR scoret−2
PIR scoret−2 PIR scoret−3
PIR score t−1,t−2 of IGO partners PIR score t−1,t−2,t−3 of IGO partners

Network characteristics the number of IGO partnerst the number of IGO partnerst,t−1
variance of Wit variance of Wit and Wi,t−1

Table 2: Three Control Sets and Placebo Sets: Network Diffusion of Human Rights Norms.

F.2 Descriptive Statistics

Here, I present basic descriptive statistics: the distribution of the treatment variable and
association between the treatment variable and the outcome variable.
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Figure 19: Distribution of the Treatment (Left) and Association between the Treatment and
the Outcome (Right). Note: The outcome ranges from 0 to 8, and the treatment from 3.68 to 6.23.
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