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Abstract
It has been known that conventional ideal point estimation methods in social

sciences (e.g., the item response theory (IRT) model or the NOMINATE-based
methods) fail to recover multidimensional ideal points because of the rotational
invariance of multidimensional ideal point estimates. The use of “anchoring”
legislators in each dimension to avoid the rotation turns out to be hopeless as the
number of dimension increases. Also, misplacement of any of anchoring legislators
would be detrimental to inferential outcomes. On the other hand, assuming
the orthogonality of each dimension along the principal axes makes it highly
difficult to estimate correlated issue positions by legislators, parties, coalitions, or
countries. In this paper, we present a new Bayesian method to fix the rotational
invariance problem in multidimensional ideal point estimation. Our method makes
two revisions: (1) we substitute the `2 norm (Euclidean distance) of existing
ideal point estimation models with the `1 norm (Manhattan distance) and (2) we
employ a multivariate slice sampling method to jointly sample multidimensional
ideal points (Neal, 2003). Our simulation studies show that the proposed method
successfully recovers multidimensional ideal points with a varying degree of cor-
relation. We apply the proposed method to the analysis of the United Nations
General Assembly (UNGA) roll-call voting data in which voting coalitions are
highly flexible along issue dimensions and no clear dimensional information is
known to researchers. The results of our analysis show that the post-Cold War
UNGA voting has been highly multidimensional and there is strong evidence to
support the U.S. as a “lonely superpower.”
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1 Introduction

Ideal points are a fundamental political science concept upon which the entire work of

explaining political behaviors and workings of political institutions has been built. Since

Poole and Rosenthal (1985)’s seminal work on the multidimensional scaling method (MDS)

for roll-call data analysis (known as the NOMINATE procedure or the NOMINATE model),

numerous scholars have developed statistical methods for ideal point estimation. The

subsequent methodological endeavors include a Bayesian item response theory (IRT) model

(Clinton, Jackman and Rivers, 2004); dynamic extensions of a Bayesian IRT model (Martin

and Quinn, 2002; Park, 2011), incorporating text, social media posts, and contribution data

to the model (Slapin and Proksch, 2008; Kim, Londregan and Ratkovic, 2018; Barberá, 2015;

Bonica, 2013), and improving the estimation efficiency using Expectation-Maximization (EM)

algorithm (Imai, Lo and Olmsted, 2016).

However, previous studies have largely focused on the estimation of ideal points in a

low (mostly one)-dimensional space, ignoring rich possibilities of multidimensional ideal

point estimation.1 In fact, it has been well known that conventional ideal point estimation

methods (e.g., the Bayesian item response theory (IRT) model or the NOMINATE-based

methods) fail to recover multidimensional ideal points because of the rotational invariance of

multidimensional ideal point estimates. Two easy methods to fix this problem are (1) using

“anchoring” legislators in each dimension and (2) assuming the orthogonality of each dimension

along the principal axes. However, the use of anchoring legislators in each dimension turns

out to be hopeless as the number of dimension increases. Also, misplacement of any of

anchoring legislators would be detrimental to inferential outcomes. On the other hand, the

second method (assuming the orthogonality of each dimension along the principal axes) makes

it highly difficult to interpret estimated ideal points as political issues are not orthogonal

and hence it is almost impossible to show correlated issue positions by legislators, parties,

coalitions, or countries.

The lack of methodological work on multidimensional ideal point estimation is particularly
1While there are some published work on multidimensional ideal point estimation such as Jackman (2001)

and Jeong (2008), we could not find a paper that presents a principled solution to the multidimensional ideal
point estimation problem. A notable exception is an unpublished work of Sohn (2018).
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troubling because empirical demands for multidimensional ideal point estimation methods

have existed for a long time and become particularly stronger with the rapid reshaping of party

politics around the world. Scholars of legislative politics, party politics, and international

relations produce new theories that attempt to explain the rise of new issues, shiftings

in coalition structure, and the realignment of political parties (e.g., McCarty, Poole and

Rosenthal, 1997; Albright, 2010; Miller and Schofield, 2003; Laver and Schofield, 2004; Voeten,

2004; Miller and Schofield, 2008).

Then, we present a flexible Bayesian method for multidimensional ideal point estimation

that aims to uncover correlated ideal points from multidimensional space. The main contribu-

tion of this paper is to (1) substitute the `2 norm (Euclidean distance) of existing ideal point

estimation models with the `1 norm (Manhattan distance) and (2) employ a multivariate slice

sampling method to jointly sample multidimensional ideal points (Neal, 2003). The proposed

method is “flexible” in the sense that (1) it does not require an arbitrary constraint to resolve

rotational invariance, (2) it can be applied to any case where dimensional coordinates of ideal

points are correlated, and (3) the number of dimensions and dimension weights can be easily

estimated.

We show that the proposed method successfully recovers various types of multidimensional

ideal points in simulated data. Then, we analyze the United Nations General Assembly

(UNGA) roll-call voting data using the proposed method. The findings show that (1) the

North–South divide remains robust after the end of the Cold War and (2) the U.S. has been

a “lonely superpower” during the post-Cold War period (Voeten, 2004).

2 Problem Statement

In this section, we report that existing ideal point estimation methods do not properly recover

multidimensional ideal points. Then, we discuss underlying causes of the problem.

2.1 A Motivating Example

W-NOMINATE is one of the most widely used methods for estimating multidimensional ideal

points in applied researches. For example, Voeten (2000) estimates multidimensional ideal
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points of the member states of the UN using W-NOMINATE on roll-call votes of the UNGA.

Specifically, he divided the roll-call votes during the first forty-three plenary sessions of the

UNGA (1946-88) and the forty-sixth through fifty-first session (1991-96) into five periods

and implement W-NOMINATE for each period.
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Figure 1: The UN Member States’ Ideal Points Estimated by W-NOMINATE

Figure 1 replicates Voeten (2000)’s analysis of two of the five periods using R package

wnominate (Poole et al., 2011). The left plot shows the ideal points of the member states

during the Cold War and the right plot shows the ideal points during the post-Cold War.

The author argues that the latent dimensions in the Cold War UNGA consist of “East–West”

and “North–South” conflict whereas those in the post-Cold War are dominated by “Western–

non-Western” division. Based on these results, the study concludes that “the underlying

structure of conflict in the post-Cold War UNGA is one-dimensional ” (Voeten, 2000, 213).

Some critical questions remain about the result. First, how can we interpret the second

dimension of the post-Cold War UNGA? The author claims that the second dimension

lacks significance in this period; however, lack of significance does not equate to no-effect.

Second, is East–West cleavage unrelated to North–South conflict? As we will show shortly,

NOMINATE-based models fail to recover the true dimensions if they are correlated (i.e.,

each-dimensional coordinates are correlated). Third, how can we interpret the ideal points of
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countries on the rim of the unit circle? Regarding this “rim problem” (Rosenthal and Voeten,

2004), some lop-sided votes are removed to reduce the number of ideal points located on

the rim, which might be also problematic. These questions are attributed to constraints for

identification of NOMINATE-based models.2

2.2 Problem

NOMINATE-based models as well as IRT model suffers from rotational invariance (see

appendix A). Thus, in order to estimate multidimensional coordinates of the ideal point,

some constraints are required to specify the dimensions.

In NOMINATE procedure, the dimensions are arranged in the order of their explanatory

power. That is, the first dimension accounts for the largest variability in the data and each

succeeding dimension, in turn, accounts for the next highest variability. The method estimates

each-dimensional coordinates in turn to implement this constraint. Poole and Rosenthal

(1997, 239) describe this procedure as follows: “Our approach bears a family resemblance to

eigenvalue/eigenvector decomposition in that we begin by estimating the one-dimensional

configuration that best accounts for the data. Keeping this first dimension fixed, we then

estimate a second dimension that best accounts for the remaining “variance”, and so on, until

the desired number of dimensions is estimated.”

This constraint bares a hidden assumption: each-dimensional coordinates of ideal points

are uncorrelated. In other words, NOMINATE cannot recover true ideal points if each-

dimensional coordinates are correlated. In the study of the UNGA, this implies that member

states’ positions along with East–West and North–South conflict have to be uncorrelated. If a

member state that belongs to the Western bloc is likely to be included in the North countries,

which is indeed the case in reality, NOMINATE cannot properly recover its ideal point.

Figure 2 illustrates this problem with simulation. Suppose there exist two groups of

legislators, group A and B, in two-dimensional space, and each dimension reflects economic

and social issue. In this society, the economic issue (e.g., unemployment) is politically

entangled with the social issue (e.g., immigration). That is someone who is “conservative” on
2The main causes of rim problem are unit circle constraint, perfect legislators and maximum likelihood

method. It is beyond the scope of this paper to explain the rim problem in more detail.
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(b) W−NOMINATE Estimation

Figure 2: Description of the Problem of W-NOMINATE

the economic issue is also “conservative” on the social issue. Accordingly, as we can see in plot

(a), the two groups have opposing views on both of the latent dimensions. However, since

NOMINATE assumes that the first dimension best accounts for the data and the second

dimension accounts for the “remaining variance”, the cleavage between group A and B is only

reflected in the first dimension of estimates, namely socio-economic dimension (see plot (b)).

Consequently, in the case where two dimensions are correlated, three problems arise: (1) the

second-dimensional coordinates, as well as the first-dimensional coordinates are highly biased,

(2) the two different yet correlated dimensions are lumped together into one dimension, and

(3) it is difficult to interpret the underlying issue of second dimension.
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(b) IRT estimation
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 (c) IRT Estimation
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(d) IRT Estimation

Figure 3: Description of the Problem of IRT

In the case of IRT method, the most well-known constraint is to fix the ideal points of k+1
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legislators in k-dimensional space in advance (Rivers, 2003; Clinton, Jackman and Rivers,

2004). However, if one of k + 1 legislators is misspecified, the entire result may be distorted.

Since fixing the ideological positions of k+ 1 legislator requires sophisticated knowledge about

the dimensions, this is also problematic for estimating multidimensional ideal points. Figure

3 illustrates this problem using R package pscl (Zeileis, Kleiber and Jackman, 2008). Plot (d)

shows that when one of the three legislator is fixed on a wrong position, other legislators’

ideal points are also biased. That is, IRT requires an ex-ante knowledge of the underlying

dimensions to the researcher for the identification.

In conclusion, IRT and NOMINATE methods do not properly recover multidimensional

ideal points because they rely on arbitrary constraints to resolve rotational ambiguity. In

this paper, we present a new statistical estimation method using Manhattan distance and

multivariate slice sampling (MSS) to solve this problem.

3 Multidimensional Ideal Point Method using Manhattan Dis-

tance and Multivariate Slice Sampling (MSS)

In this section, we first introduce a new model with the `1 norm (Manhattan distance) that

is exempt from arbitrary constraints for identification. Then, we discuss sampling algorithm

of multivariate slice sampling for the model.

3.1 Model

Let N denote the number of legislators and M denote the number of roll-call votes. Each

legislator i = 1, · · · , N votes Yea on roll-call vote j = 1, · · · ,M if the utility of voting Yea

(Uijy) is greater than that of voting Nay (Uijn), and vice versa. Let xi denote the ideal point

of legislator i, oyj denote the yea position of the roll-call vote j, and onj denote the nay

position of the roll-call vote j where xi,oyj,onj ∈ Rs. The utility of Yea (Uijy) consists of a

deterministic part, computed by a weighted `1 distance between the legislator’s ideal point
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and the yea position, and a stochastic noise (εijy ∼ N (0, 1)) as follows:

Uijy = uijy︸︷︷︸
deterministic part

+ εijy︸︷︷︸
stochastic part

(1)

uijy = −β
s∑

k=1

wk|xik − oyjk| (2)

where β is a signal-to-noise ratio, wk is a weight of the kth dimension such that
∑

k wk = 1

and wk > 0 for all k, · is inner product, and |v| is an absolute value of v (i.e., the `1 norm).

Note that Uijn is analogous to Uijy.

Let yij = 1 if legislator i votes Yea on the roll-call vote j and yij = 0 otherwise. It follows

that

Pr(yij = 1) = Pr(Uijy > Uijn) = Φ(uijy − uijn) (3)

where Φ(·) is the cumulative normal function. Then the joint posterior distribution is:

p(·|data) ∝
N∏
i=1

M∏
j=1

{
Φ(uijy − uijn)yij × (1− Φ(uijy − uijn))1−yij

}
︸ ︷︷ ︸

likelihood

(4)

×
N∏
i=1

p(xi)×
M∏
j=1

{p(oyj)× p(onj)} × p(β)× p(w1, · · · , ws)︸ ︷︷ ︸
prior

(5)

We use a Markov chain Monte Carlo (MCMC) method to sample from the joint posterior

distribution. we choose normal priors for ideal points, yea positions, and nay positions with

diffuse prior for β and wk’s. In the next section, we illustrate the algorithm in more details.

Previous spatial voting models use the `2 norm as a measure of distance in ideological

space.3 Here, we propose to use the `1 norm (also known as Manhattan distance, city-block

distance, or taxicab geometry) instead of the `2 norm within the model for the following two

reasons.
3 In W-NOMINATE, the deterministic part of the utility is uijy := β exp

{
− 1

2 ||w · (xi − ojy)||22
}
where

||v||2 =
√∑

k v
2
k (i.e., the `2 norm). In IRT model, uijy := −||xi − ojy||22.
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First, psychological studies on stimuli show that the `1 norm is more appropriate than the

`2 norm for similarity scaling with separable dimensions. For example, Shepard (1987) finds

that the `1 norm provides an adequate representation of the “analyzable” stimuli, such as the

size and orientation of a shape, whereas the `2 norm provides that of the “unitary” stimuli,

such as the lightness and saturation of a color, with a variety of experiments (see chapter 5

of Garner (2014) for more details). Since “the concept of preference can be reduced to the

psychological notion of comparing similarities” (Carroll et al., 2013, 1011) and spatial voting

models assume that the legislators may analyze each roll-call vote located in the ideological

space with separable dimensions, this result supports the use of the `1 norm.

Second, the proposed model with the `1 norm is exempt from arbitrary constraints for

identification. The identification problem with rotational invariance in previous models is

that when all the ideal points and roll-call votes’ positions rotate by the same degree, the

`2 distance between an ideal point and a roll-call vote’s position does not change but the

order of the ideal points for each dimension changes. To resolve this problem, the existing

models required the aforementioned constraints that are also problematic. However, in the

proposed model, when all the ideal points and roll-call votes’ positions rotate by the same

degree, the `1 distance between an ideal point and a roll-call vote’s position changes and

so do the likelihood. See appendix B for more details pertaining to identifiability of the

proposed model. Consequently, the model does not require arbitrary constraints to specify

the dimensions.

3.2 Algorithm

Here, we use the multivariate slice sampling method (Neal, 2003) using hyper-rectangle for

the estimation. Slice sampling is a generic method that can be easily implemented even

if the full conditional distributions of the parameters do not have a standard form. More

importantly, multivariate slice sampling simultaneously updates multiple variables so that it

allows to produce an ergodic chain when there are tight dependencies between them.4 This is
4α-NOMINATE (Carroll et al., 2013) uses univariate slice sampling which is preferred when the variables

are “almost independent.”

9



Figure 4: Single-variable slice sampling

a key virtue for ideal point estimation since each-dimensional coordinates of an ideal point

are dependent.

Figure 4 illustrates the intuition of slice sampling in univariate case.5 Suppose (a) is the

current state to be updated. In (b), a slice (red line) of the target distribution is randomly

drawn. Then, an interval I is found by gradually expanding a random interval until both ends

are outside the slice. Finally, random point is drawn from this interval I, until a point inside

the slice is found as shown in (c). This is the new value (green point) of current iteration as

described in (d), which may be the start point of the next iteration.

Multivariate slice sampling is a straightforward generalization of single-variable slice

sampling that updates multiple variables at the same iteration. In MSS method, (xi1, · · · , xis)

is sampled at the same time for each i; so are (ojy1, · · · , ojys) and (ojn1, · · · , ojns). For

simplicity of notation, suppose x = (x1, · · · , xs) is a variable to be updated and x(t+1) is a

new sample from the tth iteration. At the tth iteration, the method replaces the current

state, x(t), with a new state, x(t+1), with the following three-steps (Neal, 2003, 721):

(i) Draw y from U(0, f(x(t))), thereby defining a horizontal “slice” : S = {s : y < f(x)}.

(ii) Find a hyper-rectangle H = (L1, R1)× · · · × (Ls, Rs) around x(t) that contains all, or

much, of the slice.

(iii) Draw the new point, x(t+1) ∈ A = {x : x ∈ S∩H and P (Select H|x) = P (Select H|x(t))}.
5Single-variable slice sampling can be conducted in the case when variables are “almost independent”.

Let x denote the single variable being updated and f(x) denote the full conditional distribution of x. This
sampling method replace the current value, x(t), with a new value, x(t+1), with the following three-steps at
the tth iteration (Neal, 2003, 712-713):

(i) Draw y from U(0, f(x(t))), thereby defining a horizontal “slice”: S = {s : y < f(x)}.
(ii) Find an interval I = (L,R) around x(t) that contains all, or much, of the slice.
(iii) Draw the new point x(t+1) ∈ A = {x : x ∈ S ∩ I and P (Select I|At state x) =

P (Select I|At state x(t))}.
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The tth iteration with these three-steps can be done as illustrated in the Algorithm 1.

Algorithm 1: tth Iteration of MSS
input : f(x) = the full conditional distribution of x

x(t) = the current point
c = estimate of the typical size of a slice

output : x(t+1) = the new point
initialization: y ← f(x(t))− rexp(1)

For i = 1, · · · , s:
`i ← x

(t)
i − c× runif(0, 1)

Ri ← Li + c
1 repeat
2 for i = 1, · · · , s do
3 x

(t+1)
i ← Li + runif(0, 1)× (Ri − Li)

4 if y < f(x(t+1)) then
5 exit loop
6 for i = 1, · · · , s do
7 if x(t+1)

i < x
(t)
i then

8 `i ← x
(t+1)
i

9 else
10 Ri ← x

(t+1)
i

4 Simulations

Through simulation studies, we show that MSS method successfully recovers the multidimen-

sional ideal points.

4.1 Data Generating Process

We generate the data for simulation as follows. First, we draw the ideal points of legislators

from the multivariate normal distribution. Emphasized here is that we assume latent blocs of

legislators on the ideological space. This assumption is made because legislators might hold

particular combinations of ideologies for several reasons: e.g., correlation of the issues, the

majority of the elected holding typical issue positions, parties contrasting against each other

to win elections. By adjusting the number of blocs (#g), their center (µg), and the degree of
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dispersion (Σg), we conduct simulations based on three possible settings: non-partisanship,

two-party system, and multi-party system.

Second, we randomly draw each-dimensional coordinates of yea and nay positions of each

roll-call vote from the uniform distribution. We carefully adjust the lower and upper bounds

of the distribution so that it coincides with the maximum and minimum of ideal points’

coordinates. We made no further assumption on roll-call votes’ positions.

Third, based on these ideal points and roll-call votes’ positions, we compute each legislator’s

possibility of voting yea for each roll-call vote. Then, we conduct inverse transform sampling

to randomly generate voting with the computed possibility. The entire simulation setup can

be summarized as follows:

1. Draw ideal points xg[i] from N (µg[i],Σg[i]), where g[i] ∈ {1, 2, · · · ,#g} denotes a bloc

to which the legislator i belongs and Σg[i] =

σ2
g[i]1 0

0 σ2
g[i]2

.

2. Draw each-dimensional coordinates of yea and nay positions oyjk, onjk from U(−θ, θ).

3. Compute Pr(yij = 1) for all i and j with w1 = w2 = 0.5, β = 1.

4. Sample γij from U(0, 1). If γij < Pr(yij = 1) set yij = 1, otherwise set yij = 0.

4.2 Simulation Results

In all settings, the number of legislators is fixed at 50 and the number of roll-call votes is set

at 500. All samples are obtained from 20,000 MCMC iterations with 10,000 burn-in trials

and thinning every 10th draw. Posterior draws passed conventional measures of convergence

diagnostics.

We generate synthetic ideal point data from three different settings: “non-partisanship,"

“two-party system," and “multi-party system." Non-partisanship indicates a case where

legislators have uncorrelated ideal points across dimensions. Two-party system indicates a

case where two parties strongly pull legislators’ vote choices in the opposite direction and

hence party medians are clearly identified in both dimensions. Multi-party system indicates

a case where two polarized main parties coexist with two additional minor parties that are

also distinguished by their own issue positions in both dimensions. The two-party system

approximates American politics while the multi-party system represents European politics.
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ŵ1 = 0.49     95% CI = ( 0.47 , 0.52 )

●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

−6

−3

0

3

6

−5.0 −2.5 0.0 2.5 5.0

true

es
tim

at
e

True v. MSS Estimation (D1)

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

−6

−3

0

3

6

−5.0 −2.5 0.0 2.5

true

es
tim

at
e

True v. MSS Estimation (D2)

Figure 5: Simulation Results of MSS

Figure 5 shows the result of simulation studies.6 Each point of the first plots is the

product of an ideal point and signal-to-noise ratio (βxi); so is each point of the second plots

(β̂x̂i). We present these products because the latent ideal points and the size of their effect

are at the core of the spatial voting model; also, no additional constraint on the scale of ideal

points for identification is required for these products.

MSS method successfully recovers various types of multidimensional ideal points in

simulations. In all three cases, the fourth and fifth plots comparing the true ideal points and

their estimates on each dimension show a remarkable result; the order of estimates matches

well with that of the true values. In particular, the simulation study of two-party system

shows that MSS method can be applied in the case where each-dimensional coordinates are
6If all the sign of estimated ideal points have flipped (e.g., (xi1, xi2)→ (x̂i1,−x̂i2) for all i) or the order of

dimension has changed ((e.g., (xi1, xi2)→ (x̂i2, x̂i1) for all i)), we have adjusted these for ease of comparison.
Note that the sign of ideal points and the order of dimensions are meaningless and can be ignored.
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correlated. Moreover, the weight of each dimension is successfully recovered as noted in the

bottom of second plots. We also conduct simulations with different weights of dimensions

((w1, w2) = (0.7, 0.3)) and one-dimensional case (i.e., (w1, w2) = (1, 0)); MSS method still

performs well in these cases (see appendix C).

5 Application

In this study, we use the roll-call voting data collected by Voeten (2013). The data consists

of all adopted resolutions put to a roll-call vote during the seventy-two sessions of the UNGA

(1946-2017). For purpose of comparison with previous studies, we have divided the entire

sessions into five periods and have treated abstention as signs of not accepting a resolution as

Voeten (2000) did. We conduct two-dimensional MSS estimation to analyze the underlying

conflict of the UNGA and its change over time. Here, due to the space constraint, we only

state the result of the Cold War period (1954-69) and the post-Cold War period (1991-93).
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Figure 6: The UN Member States’ Ideal Points Estimated by MSS

Figure 6 shows the member states’ ideal points estimated by MSS for each period. Three

points must be emphasized. First, in contrast to Voeten (2000)’s finding, the underlying

structure of conflict in the post-Cold War UNGA is multidimensional. As stated in section

14



2.1, Voeten (2000) argues that the post-Cold War UNGA has been dominated by the Western–

non-Western conflict. However, as the right plot of figure 6 shows, the ideal points of

member states hardly be mapped into one-dimensional space. If the ideological space is

one-dimensional, one of the two weights must be zero in two-dimensional estimation. On the

contrary, the estimated weights are (ŵ1, ŵ2) = (0.55, 0.45), which supports multidimensional

ideological space.

Second, North–South and Western–non-Western divisions jointly construct conflict of

the post-Cold War UNGA. As shown in the right plot of figure 6, Western countries are

located in the left and bottom; African countries are located in the right; Asian countries

are located in the top. Through these locations, one may interpret the cleavage of the first

dimension as North–South conflict and that of the second dimension as Western–non-Western

conflict. Moreover, figure 7 shows that the votings related to the Middle East issue are divided

horizontally whereas those of other issues such as colonialism or economic development are

divided vertically, which supports the interpretation of dimensions.7 This result refutes

the prominence of North–South cleavage (Kim and Russett, 1996) and the dominance of

Western–non-Western clash (Voeten, 2000).

Third, the U.S. has become a “lonely superpower” after the Cold War periods. Voeten

(2004) demonstrates the notion of the lonely superpower by selected UNGA voting and one-

dimensional multilevel IRT model. MSS estimation further elaborates this result by mapping

the ideal points into the multidimensional space. In figure 6, the U.S., once located in the

middle of the ideological space at the Cold War period, has become isolated in the post-Cold

War UNGA. This isolation stands out in MSS estimation compared to W-NOMINATE (figure

1) where all the extremists are on the rim of a unit circle.

6 Conclusion

In this study, we proposed a flexible Bayesian method for multidimensional ideal point

estimation using the `1 norm and multivariate slice sampling. Existing ideal point estimation

methods based on the item response theory (IRT) model or the NOMINATE procedure
7Voeten (2013) coded related issue(s) of each voting.
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Figure 7: The Degree of Voting Along with the U.S. by Issue

do not properly recover multidimensional ideal points because of arbitrary identification

constraints to resolve the rotational invariance problem. These constraints either require

sophisticated knowledge about the locations of multidimensional ideal points (in the case of

IRT models) or assume no cross-dimensional correlation of ideal points (in the case of the

NOMINATE procedure). As a result, conventional ideal point estimation methods fail to

uncover correlated issue positions by legislators, parties, coalitions, or countries.

The proposed method is “flexible” in the sense that (1) it does not require an arbi-

trary constraint to resolve rotational invariance, (2) it can be applied to any case where

dimensional coordinates of ideal points are correlated, and (3) the number of dimensions

and dimension weights can be easily estimated. MSS method successfully recovers various

types of multidimensional ideal points in simulations. In particular, it successfully recovered

multidimensional ideal points in the case where each-dimensional coordinates are highly

correlated. Furthermore, it successfully estimates the weight of dimension even when one of
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two weights is zero. That is, MSS method successfully identifies one-dimensional nature of

data even when the two-dimensional model is used.

We applied MSS method to the UNGA roll-call voting data. The result shows that the

latent voting space of the UNGA is highly multidimensional during the post-Cold War period.

The North–South and Western–non-Western divides characterize latent voting dimensions of

the UNGA, the findings of which contrast with Voeten (2000). Also, the findings show strong

evidence for the isolation of the U.S. during the post-Cold War period, which is consistent

with in Voeten (2004).

In sum, MSS method is a highly useful and flexible method to investigate correlated

multidimensional ideal points in political science. The authors are in the process of publishing

an open-source software to implement MSS method in R. Future developments of MSS

method include testing multidimensional theories of legislative politics using MSS method

and applying MSS method to the study of European Parliament data and the U.S. roll-call

voting data over a long history.

17



Appendix

A The Rotational Invariance Problem

IRT and NOMINATE-based models suffer from rotational invariance since these models

incorporate the `2 norm in the utility form. IRT model assumes quadratic utility and

NOMINATE-based models assume Gaussian (Normal) utility. Here, we illustrate each model

of IRT and W-NOMINATE and the problem of rotational invariance.

IRT

UQuad
ijy = uQuad

ijy + εijy (6)

uQuad
ijy = −

s∑
k=1

(xik − oyjk)2 (7)

= −(xi − oyj)
>(xi − oyj) (8)

where xi = (xi1, · · · , xis)> and oyj = (oyj1, · · · , oyjs)>. Suppose a s by s matrix R such

that R> = R−1 and det(R) = 1. R is a rotation matrix by definition. Then multiplying

R>R = I in the middle of two vectors of equation (8) does not change the value; i.e.,

uQuad
ijy = −(xi − oyj)

>R>R(xi − oyj). Let each vector of xi, oyj, and onj for all i and j be

multiplied by R to create rotated ideal points, yea positions, and nay positions: x′i = Rxi,

o′yj = Royj, and o′nj = Ronj for all i and j. It follows that,

uQuad
ijy = −(xi − oyj)

>(xi − oyj) (9)

= −(xi − oyj)
>R>R(xi − oyj) (10)

= −(Rxi −Royj)
>(Rxi −Royj) (11)

= −(x′i − o′yj)
>(x′i − o′yj) (12)

and so do uQuad
ijn = −(x′i − o′nj)

>(x′i − o′nj) for all i and j. That is, the rotated ideal points

and yea/nay positions yields the same value of uijy and uijn (i.e., rotation invariance).
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Accordingly, the likelihood does not change when all the ideal points and yea/nay positions

are rotated with the same degree, which causes an identification problem.

W-NOMINATE

UNorm
ijy = uNorm

ijy + εijy (13)

uNorm
ijy = β exp

{
−1

2

s∑
k=1

w2
k(xik − oyjk)2

}
(14)

= β exp

{
−1

2
(xi − oyj)

>(xi − oyj)

}
(15)

where xi = (w1xi1, · · · , wsxis)
> and oyj = (w1oyj1, · · · , wsoyjs)

>, each of which denote a

weighted ideal point and yea position for simplicity. In analogy with previous case of IRT,

W-NOMINATE also suffers from rotational invariance.

uNorm
ijy = β exp

{
−1

2
(xi − oyj)

>(xi − oyj)

}
(16)

= β exp

{
−1

2
(xi − oyj)

>R>R(xi − oyj)

}
(17)

= β exp

{
−1

2
(Rxi −Royj)

>(Rxi −Royj)

}
(18)

= β exp

{
−1

2
(x′i − o′yj)

>(x′i − o′yj)

}
(19)

Consequently, the rotational invariance of W-NOMINATE causes an identification problem.

Note that DW-NOMINATE also suffers from the same problem since it uses the same utility

form with the `2 norm.

19



B Identifiability of the Proposed Model

Below, we discuss the identifiability of the likelihood function of the model, which is the

only data dependent part of the model. We remark that even the likelihood function is

not identifiable, the full Bayesian model can be identifiable by the specification of the prior

distribution.

Let, for each i = 1, 2, . . . , n and j = 1, 2, . . . ,m,

g1
(
w ◦ xi,w ◦ oyj,w ◦ onj, β

)
= β

{
‖xi − oyj‖w1 − ‖xi − onj‖w1

}
= β

{
‖w ◦ xi −w ◦ oyj‖1 − ‖w ◦ xi −w ◦ onj‖1

}
= β

s∑
k=1

{
|wkxik − wkoyjk| − |wkxik − wkonjk|

}
,

where a ◦ b is the Hadamard product of s−dimensional vectors a and b. The likelihood

function is monotonic to g1
(
w ◦ xi,w ◦ oyj,w ◦ onj, β

)
.

The identifiability of g1
(
w ◦xi,w ◦oyj,w ◦onj, β

)
is about x′i = w ◦xi, o′yj = w ◦oyj and

o′nj = w ◦ onj. We use the notation xi, oyj and onj instead of x′i, o′yj and o′nj for notational

simplicity.

Theorem 1. With the centering constraint (i) oyj + onj = 0 and (ii) the scaling constraint

‖oyj‖2 = ‖onj‖2 = 1 for j = 1, 2, . . . ,m, the likelihood function (the function of w ◦ xi,w ◦

oyj,w ◦ onj and β) is identifiable up to the permutation of axes (i.e. basis vectors) of

(s−dimensional) projected space.

Proof. Without the constraints, the function g1
(
xi,oyj,onj, β

)
is identifiable only up to

location-shift, scale, and permutation transformation. That is,

g1
(
xi,oyj,onj, β

)
= g1

(
cAxi + ∆, cAoyj + ∆, cAonj + ∆, (1/c)β

)
, (20)

where c ∈ R+, A =
(
akl, 1 ≤ k, l ≤ s

)
is a permutation matrix that is akls are 0 or 1 and∑s

k=1 akl =
∑s

l=1 akl = 1 for every k, l = 1, 2, . . . , s. The centering constraint (i) oy + on = 0

resolves the non-identifiability with respect to the location-shift transformation; the equivalent
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relationship (20) implies that ∆ = 0s×1. Now, with the condition oy + on = 0, the function

g1
(
x,oy,on,w

)
is identifiable up to the scale and permutation transformation:

g1
(
xi,oyj,onj, β

)
= g1

(
cAxi, cAoyj, cAonj, (1/c)β

)
,

where c ∈ R+ and A is a s−dimensional permutation matrix. Further, by noting that

‖cAoyj‖2 = c‖oyj‖2, the scaling constraint (ii) identifies the model with respect to the scale

transformation. Finally, with both constraints (i) and (ii), we have the invariance up to the

permutation transformation:

g1
(
xi,oyj,onj, β

)
= g1

(
Axi,Aoyj,Aonj, β

)
(21)

for any permutation matrix A.

Our remark on the proposed `1 norm based multidimensional scaling (MDS) is that it

makes an objective and data dependent choice on axes (i.e. coordinate vectors) of MDS

compared to `2 norm based MDS. To understand this better, let us briefly review the `2 norm

based MDS procedure.

Similarly to the `1 norm based MDS, the `2 norm based MDS relies on, for i = 1, 2, . . . , n,

and j = 1, 2, . . . ,m,

g2
(
xi,oyj,onj,w, β

)
= β

{
‖xi − oyj‖22 − ‖xi − onj‖22

}
. (22)

For each i and j, the function g2
(
x,oy,on,w, β

)
is identifiable up to location-shift, scale, and

rotation transformation as

g2
(
xi,oyj,onj, β

)
= g2

(
cT>xi + ∆, cT>oyj + ∆, cT>onj + ∆, (1/c)β

)
, (23)

for any ∆ ∈ Rs and s−dimensional orthonormal matrix T, TT> = T>T = Is.

To make g2(·) be identifiable, we assume scaling constraint (ii) and (iii) the scores of

s+ 1 legislatives, say x1,x2, . . . ,xs+1, be fixed as f1, f2, . . . , fs+1. As in the `1−based MDS,

the scaling constraint makes the g2(·) be identifiable to the scale transformation. Now,
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let us see why (iii) resolves the identifiability problem related with the location-shift and

rotation transformation. Let x∗i s, o∗yjs, and o∗njs be one set of estimates for n legislatives

and m roll calls. Suppose we subjectively fix the ideal points of the first s + 1 legislatives

as f1, f2, . . . , fs+1, which have equivalent relationship with x∗1, . . . ,x
∗
s+1 in (23) with c = 2, so

that, for i = 1, 2, . . . , s+ 1,

fi = Tx∗i + ∆ (24)

for some orthonormal matrix T and ∆ ∈ Rs. The identity (24) induces

T
[
x∗2 − x∗1,x

∗
3 − x∗1, · · · ,x∗s+1 − x∗1

]
=
[
f2 − f1, f3 − f1, · · · , fs+1 − f1

]
and ∆ = f1−Tx∗1,

and these decide the orthonormal matrix T and ∆ uniquely. Thus, the assumption or

constraint (iii) points out the unique solution among infinitely many equivalent solutions

generated by location-shift and rotation transformation.

Here, in the `2−based MDS, the set of axes (s coordinate vectors) for Txi is changing

and dependendent on T; it is not equal to that of xi and not invariant to the rotation

transformation. Thus, the axes for ideal points xi are decided by the subjective selection of

s+ 1 legislatives and the constants f1, f2, . . . , fs+1. Further, the numbers f1, f2, . . . , fs+1 will

decide how each axis is composed by fundamental units (economic, social, ideology, ...); for

example, one choice of the numbers makes the first axis be 80% of economic and 20% of

social, and another choice makes it be 60% of economic and 40% of social. The arbitrary

fixed scores f1, f2, . . . , fs+1 for the subjectively chosen s+ 1 legislatives are much influential

to the MDS results.

Unlike the `2−based MDS, in the `1−based MDS, for any permutation matrix A, the set of

axes (coordinate vectors) of xi and Axi is equal, invariant to the permutation transformation

A. Thus, the `1−based MDS has a finite number (s!) of equivalent solutions which are based

on the same set of coordinate vectors. In addition, it decides the axes fully based on data

information free from any subjective choice.
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C Simulation Results
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ŵ1 = 0.7     95% CI = ( 0.68 , 0.72 )

●

●

●

●●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

−2

0

2

−2 −1 0 1 2

true

es
tim

at
e

True v. MSS Estimation (D1)

●

●●

●

●

●

●

●
●●

●

● ●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

−1

0

1

−1.0 −0.5 0.0 0.5 1.0

true

es
tim

at
e

True v. MSS Estimation (D2)

●

●
●

●

●
●

●

● ●● ●●
●●● ●
●

●

●
●

●
●●

●
●

−2.5

0.0

2.5

−2.5 0.0 2.5

Dimension 1

D
im

en
si

on
 2

True Ideal Points

(b) Two−party system
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(c) Multi−party system
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Figure 8: Two-dimensional MSS Estimation

Each row is the result of four different simulation studies: (a) non-partisanship with

weights (w1, w2) = (0.7, 0.3); (b) two-party system with weights (w1, w2) = (0.7, 0.3); (c)

multi-party system with weights (w1, w2) = (0.7, 0.3); (d) one-dimensional case — i.e., weights

(w1, w2) = (1, 0). MSS method successfully recovers each ideal point and weight for all cases.
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D MCMC Diagnostics

−0.4
−0.3
−0.2
−0.1

0.0
0.1

0 5000 10000 15000 20000D
im

en
si

on
 1

Non−partisanship w1 = 0.5

Burn−in: 10,000; Thinning: 10

−1.2
−1.0
−0.8
−0.6
−0.4

0 5000 10000 15000 20000D
im

en
si

on
 1

Two−party system w1 = 0.7

Burn−in: 10,000; Thinning: 10

0.00
0.25
0.50
0.75

0 5000 10000 15000 20000D
im

en
si

on
 2

Multi−party system w2 = 0.3

Burn−in: 10,000; Thinning: 10

0.2

0.3

0.4

0 10000 20000 30000 40000 50000

D
im

en
si

on
 1

One−dimensional case

Burn−in: 10,000; Thinning: 10

Figure 9: Trace Plots of Randomly Chosen Ideal Points (Simulation Results)
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Figure 10: Trace Plots of Ideal Points of the U.S. and Russian Federation (1954-69 UNGA)
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Figure 11: Trace Plots of Ideal Points of the U.S. and China (1991-93 UNGA)
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E Application Results
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Figure 12: The UN Member States’ Ideal Points Estimated by MSS (1946-1996)
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