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Abstract

In this paper, we develop and make available measures of public ideology in 2010 for the 50 Ameri-
can states, 435 congressional districts, and state legislative districts. We do this using the geospatial
statistical technique of Bayesian kriging, which uses the locations of survey respondents, as well as
population covariate values, to predict ideology for simulated citizens in districts across the country.
In doing this, we improve on past research that uses the kriging technique for forecasting public
opinion by incorporating Alaska and Hawaii, making the important distinction between ZIP codes
and ZIP code tabulation areas, and introducing more precise data from the 2010 Census. We show
that our estimates of ideology at the state, congressional district, and state legislative district levels
appropriately predict the ideology of legislators elected from these districts, serving as an external
validity check.
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In the study of state politics, a constant struggle when studying representation in the

American republic is finding reliable measures of public sentiment for the constituencies elected

officials serve. In order to see the degree to which voters shape or constrain legislators’ actions,

a sense of where the voters stand is critical. However, it is hard to find public opinion surveys

that are taken at regular intervals, include respondents from all districts of interest, and have a

large enough sample for constituency-based subsets of respondents to be big enough to obtain

meaningful district-based measures of opinion. For example, if we want to consider how state-

level public ideology affects U.S. Senators’ behavior in roll call votes, there are scarce options

for surveys that cover all 50 states, include a large sample size in each state, and are observed

at regular intervals.1 This problem led Erikson, Wright and McIver (1993) to address this

issue by pooling several CBS/New York Times polls over time to create a static measure of

state ideology, thus sacrificing temporal change to obtain respectable state-level sample sizes.

The problem is exacerbated in studies of U.S. House members, which require coverage in 435

smaller districts, and the problem becomes an order of magnitude harder in the study of

state legislators (requiring coverage in 1,972 upper chamber districts and 5,411 lower chamber

districts). Thus, there is a running challenge in measuring constituency-level public opinion,

particularly in smaller districts.

There are several primary strategies for dealing with the difficulty of measuring public

ideology. The first is to simply subset the survey data by the unit of geographic distinction,

which has the advantages of being simple and relying on direct observations of individuals.

The main problem with this approach, however, is that the sample size can become quite

small even at the state level, much less when looking at districts for the state legislature, and

even more challenging when studying demographic subgroups. Additionally, many surveys

such as the American National Election Study stratify on region so subsamples are not going

to be representative at the state level or lower. A second approach is to use election returns

as a proxy for ideology in a district (Ansolabehere, Snyder and Stewart 2001; Erikson and

Wright 1980; Berry et al. 1998). This approach either uses presidential returns (with the logic

being that because the candidates’ ideologies are constant nationwide, the vote share will

change only in response to the median voter) or uses votes in congressional races (scaling vote

shares with measures of the ideology of both incumbents and challengers). While vote-based

measures use abundant data that are simple to gather, vote choice is conceptually distinct

from ideology. Besides general ideology, votes might be based on regional appeals, personality

traits, or economic well-being, thereby inducing added measurement error. Also, vote choice

1An important, recent exception to this is the annual Cooperative Congressional Election Study (CCES),
which is an internet-based survey that covers every congressional district in the nation (Ansolabehere 2011).
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alone may be a misleading measure in that it does not account for the relative dispersion of

ideological positions in a district (Kernell 2009). A third possibility is to use poststratification,

which fits a training model based on survey data and then uses that model to forecast public

opinion based on known population data. Several scholars have used weighting and forecast-

based measures of public opinion over the years (Pool, Abelson and Popkin 1965; Weber

and Shaffer 1972; Weber et al. 1972; Jackson 1989, 2008). The most recent technology is

to use multilevel regression with poststratification (MRP), which finds constituency-specific

random effects in the survey data (Gelman and Little 1997; Park, Gelman and Bafumi 2004,

2006; Lax and Phillips 2009; Tausanovitch and Warshaw 2013). The idea of incorporating a

constituency-specific random effect is reasonable because of all of the unobserved factors that

can shape public sentiment in an area. However it can be improved upon in two ways: ideally

we would be able to predict random effects even in constituencies where we do not observe

survey data, and the geographic variation in random effects may be even more precise than

defined borders dictate.

A fourth option, which we build on, is the universal kriging approach developed by Mono-

gan and Gill (2016). Universal kriging follows a similar logic to MRP, but uses covariate values

measured at the most precise geographical level possible and a smoothed residual structure

over geographic space to improve forecasts. The smoothed structure does not abruptly break

at border definitions, and it is possible to make forecasts from it even in constituencies without

observed survey respondents. While the previous work shows that kriging produces externally

valid measures of public sentiment, this study improves on that method in several ways: First,

the previous work ignored Alaska and Hawaii as discontiguous states. Here, we propose a so-

lution of relocating these states next to their ideological neighbors in the contiguous 48 states

to obtain measures of ideology in all 50 states. Second, the previous work erroneously located

survey respondents with ZIP Code Tabulation Areas (ZCTAs), when the survey recorded re-

spondent ZIP code. These are not equivalent, so we address this problem here. Third, we

improve upon prior work by using newer data from the 2010 Census, and we specifically krige

with much more precise information. The 2010 Census reports data at the census block level,

allowing us to draw simulated citizens closely in line with population density. Covariates also

are now sampled from the most precise possible level—often the block level itself. Hence, our

estimates should be more accurate in smaller constituencies. Fourth, we apply this method not

only at the state level, but also in congressional and state legislative districts. Consequently,

a product of our work is that we now release for public use measures of public ideology in

2010 for the 50 states, 435 congressional districts, districts for upper chambers of state legis-
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latures, and districts for state legislative lower chambers. Fifth, we present a new program for

estimating for kriging models, a full-information Metropolis-Hastings algorithm. Altogether,

this work represents a marked advance in the universal kriging technique.

We proceed first by reviewing the model itself, why substantively it should work, and

the data we use in this application. Second, we describe in detail the new advances that

we make in how universal kriging can be applied to measuring public opinion. Third, we

describe the results from our estimated model using 2008 Cooperative Congressional Election

Study (CCES) data. Fourth, we present our forecasted measures of ideology and several

validity checks. Fifth, we present our new Metropolis-Hastings algorithm with an application

that examines mineral deposit levels near the Meuse River. Sixth, we describe remaining

challenges of our work. Finally, we describe the implications of our study and room for future

work.

1 Point-to-Block Realignment with Universal Kriging

Our method for translating a public opinion survey into measures of constituent-level ideology

follows the logic of point-to-block realignment (Banerjee, Carlin and Gelfand 2015, Chapter

7; Monogan and Gill 2016). The intuition behind this technique is to estimate a model of

observations that are located at points in space (such as latitude and longitude), make several

predictions from this model at a wider range of points in space using known covariate values,

and then use the predictions falling within a block (or border-referenced area in space) to

produce a block-level forecast. In our case, we will locate survey respondents in geographic

space using known information about their address (treating them as points in space), use

population Census data at various geographic locales to make predictions throughout the

United States, and then average all predictions falling within an electoral district to determine

the average ideology of that constituency. Hence, the 50 states, 435 congressional districts,

or state legislative districts form our block, or areal, units of interest in this point-to-block

realignment.

Meanwhile, our middle step of using population Census data to make forecasts of several

simulated citizens in districts across the nation follows a similar logic to weighting, regression,

or MRP techniques, except our forecasts can include a spatial error term that borrows strength

from nearby observed survey respondents. To do this, the model we estimate over our training

data must be a kriging model that allows for covariance among geographically proximate

respondents. Kriging has had some uses in Political Science, both in predicting potential
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campaign contributions at residences (Tam Cho and Gimpel 2007) and the wind direction at

major pollution sites (Monogan, Konisky and Woods 2017). The two general types of kriging

are ordinary kriging, which relies purely on a spatial error process to make predictions, and

universal kriging which also allows spatial trend terms and even location-specific exogenous

predictors to shape the prediction. We follow the universal kriging approach advanced by

Monogan and Gill (2016), which uses a linear prediction based on demographic predictors

and a polynomial trend term, plus the spatial error prediction. The nice feature of this is

that our spatial error term forms a density blanket such that we can make predictions for

any constituency spanned by the locations of our respondents, even if there were no observed

survey respondents within the district of interest.

(1) Preliminary Training
 with Survey Data
 & Specify Trend

 (OLS Model)

(2) Select Error
 Model Using Initial

 OLS Results

(3.A) Estimate Bayesian
 Training Model with
 Survey Bootstraps

(3.B) Summarize
 Model

 Results

(4.A) Forecast with Bayesian
 Model over Bootstrapped

 Census Data

(4.B) Summarize
 Forecasts
 by District

Figure 1: Flowchart showing the steps of point-to-block realignment.

Figure 1 illustrates the steps of point-to-block realignment. Step (1) is to fit a preliminary

linear model with ordinary least squares (OLS). Here we try several specifications of the OLS

model to gauge the proper functional form for a trend term in longitude and latitude (or

eastings and northings) based on model fit. In step (2), we can examine the OLS residuals

from the best-fitting model in the prior step and determine what the best-fitting functional

form of the spatial error process is. That is, given the covariates and our chosen geographic

trend term, how do our errors spatially correlate and what function best summarizes that

correlation structure? Possible error process models for the residuals include (among others)

the exponential, Gaussian, spherical, wave, or Matérn processes (Banerjee, Carlin and Gelfand

2015, 25-30). Step (3.a) is to estimate the Bayesian model with survey bootstraps. This

model treats the conditional mean of ideology as a function of individual covariates and the

geographic trend term, and it simultaneously estimates the parametric error structure decided

on in the previous step. Due to computational limitations, the model is estimated for subsets

of the survey data, each a random draw from the larger survey sample. At the end of this

step, we pool all parameter posterior samples together across bootstrapped runs to form one
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large posterior sample with which to summarize our parameters of interest. After estimating

the model, we can proceed in two ways: In step (3.b) we can summarize our model’s results

by reporting descriptive statistics from the pooled posterior draws. Meanwhile, in step (4.a)

we can begin forecasting with bootstrapped Census data. With the forecasting, we take a

set of bootstrapped results from our training model, and we forecast over a random sample

of Census data. We draw a fresh random sample of the Census data for each bootstrapped

sample, thereby forecasting for a wide range of individuals in our kriged Census sample at

locations spread throughout the nation in proportion to population density. In step (4.b),

our final step, we summarize our forecasts by district: We simply pool all of our kriged

Census individuals from bootstrapped forecasts and organize the larger pool into the districts

of interest in which these simulated citizens reside. Once organized based on constituency, we

compute descriptive statistics of these kriged forecasts by district. This provides us with our

district-level forecasts of the mean and variance of ideology within each constituency—be the

district a state, congressional district, state legislative district, or something else.

1.1 Specifying the Model

The method of point-to-block realignment assumes that the observed point-level (person) data

and the extrapolated block-level averages (area) have a joint Gaussian distribution. We start

by specifying how the training side of the model works to fit a model over observed survey

data. Define now s as a set of n observed sites {s1, s2, . . . , sn}, where each si represents the

location of a survey respondent in space—either in latitude and longitude, or in northings and

eastings (as we use in this application).2 Here Y(s) is an associated collection of outcomes

Y(s) = {Y (s1), Y (s2), . . . , Y (sn)}, the survey response of interest for the survey-taker at

each site. X∗(s) = {x∗(s1),x
∗(s2), . . . ,x

∗(sn)} is a collection of covariates for each survey

respondent observed at his or her respective point in space. We specify a linear model as

follows:

Y(s) = µ(s) + ω(s) + ǫ(s), (1)

where: µ(s) = X(s)β is the mean structure based on a linear additive component (like

a standard regression model), ω(s) are realizations from a mean-zero stationary (usually)

2Northings and eastings are an alternative to latitude and and longitude advocated by the U.S. National
Imagery and Mapping Agency and used by most militaries. These are defined by the Universal Transverse
Mercator (UTM) which establishes 60 curved vertical “strips” across the globe, each with 6 degrees of longitude
starting at 180 degrees. Within this UTM, grid points are offsets in meters where northing is the distance
from the equator and easting is the distance from the closest western line of the 60 vertical zone boundaries.
The southern hemisphere is made positive in northings by adding a constant. There are a variety of possible
projections and reference points, and we define ours later in the paper.
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Gaussian spatial process that captures spatial association (closer points are more informative

than distant points), and ǫ(s) is a regular uncorrelated disturbance term.

An important feature of Equation 1 is that the variance is split into two disturbance terms:

one that captures spatial association, and the other that is a traditional independent and

identically distributed error term with homoscedastic variance. We thereby use the following

distributional assumptions for these two terms: ω(s) ∼ N (0, σ2H(φ)), and ǫ(s) ∼ N (0, τ 2I).

Several of the parameters of these variance components have a substantive interpretation.

From the idiosyncratic error term, ǫ, we call the variance term τ 2 the nugget. This is the

amount of error variance in the outcome that is independent from spatial separation. We can

think of this as the variance in the error when the geographic separation between observations

is negligible. Turning to the spatial ω error terms, σ2 is called the partial sill. The partial

sill reflects the variance that can be driven by geographic distance between two observations,

with the assumption being that more distant observations have a higher variance. The partial

sill equals the maximum amount of variance among observations due strictly to geographic

separation. In fact, the nugget plus the partial sill equals the sill, which is the maximum total

variance possible among distant observations. Finally, the other parameter feeding into the

spatial ω error terms is the range term, R = 1/φ. (φ itself is called the decay term.) When the

distance between observations is as great or greater than the range term R, then the variance

among those observations equals the sill. In other words the range term tells us the threshold

distance at which error variance is maximized.

The last piece of specifying ω(s) is that we must specify the function H(φ). This is a

parametric spatial correlation function that typically only requires us to estimate the decay

parameter φ. We typically assume an isotropic model, which means that the level of spatial

correlation does not depend on direction but only on the distance between the observations

dij = ‖si − sj‖. In this case, we must choose a parametric model—the exponential, spherical,

wave, and Gaussian are a few common options—that captures the patterns of residual associa-

tion in our data. Each of these parametric models specifies both a spatial correlation function

(stating simply how much observations should correlate given their distance apart), as well as

a semivariogram function (specifying how much observations should vary given their distance

apart). The two fit naturally together with a high correlation implying a low variance and

vice versa. Once we determine the best parametric correlation function, the product of the

correlation function H with the partial sill σ2 builds the spatial covariance structure into the

joint distribution of the ω(s) disturbance terms.

When determining the exact parametric specification of H, we normally focus on the
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related semivariogram to determine the right parametric structure. We choose the right model

through an empirically-driven process wherein the empirical semivariogram is calculated from

the residuals of an initial model. The formula for the empirical semivariogram is (Cressie

1993, 69):

γ̂(d) =
1

2|N(d)|

∑

(i,j)∈N(d)

|z(si)− z(sj)|
2, (2)

where z(si) is the residual term for the respondent located at site si from an initial linear

model, d is an approximate distance of interest (possible distance values are usually coarsened

into bins), N(d) is the set of all pairs of observations such that |z(si)− z(sj)| ≈ d, and |N(d)|

is the number of pairs in the set that are separated by distance d. The semivariogram equals

two quantities: the variance of all observations separated by distance d when pooled together,

as well as half the variance of the differences (z(si)−z(sj)) between observations separated by

distance d. Using the empirical semivariogram, we then determine which parametric model

is most appropriate for our data, choosing from the exponential, spherical, wave, Gaussian,

or some other parametric semivariogram. Once we have that, we know the related spatial

correlation function (Banerjee, Carlin and Gelfand 2015, 28-29). In our case here, the best-

fitting model is the Gaussian semivariogram, so implies that our spatial correlation function

should be H(φ)ij = exp(−φ2d2ij).

With all of these elements in place for modeling the responses of survey respondents, we

now step back and think about where this training model fits relative to our forecasting process

of state, congressional district, and state legislative district ideology. Since our model assumes

the observed point-level data and the extrapolated block-level averages have a joint Gaussian

distribution, we get:

f

((

Ys

YB

)
∣

∣

∣

∣

∣

β, σ2, φ

)

= N

((

µ
s
(β)

µ
B
(β)

)

, σ2

(

Hs(φ) Hs,B(φ)

HT
s,B(φ) HB(φ)

))

,

where Ys represents the vector of ideology among individual citizens, YB represents the vector

of ideology in all block-referenced constituencies of interest, and H defines the correlation

matrix of observations as before. Note that this presents the simplified case where there is no

nugget effect (τ 2), but the result still holds if the variance-covariance terms do include a nugget.

By standard normal theory (e.g. Ravishanker and Dey 2002), the conditional distribution of
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our extrapolated block averages is:

YB|Ys,β, σ
2, φ ∼ N (µ

B
(β) +HT

s,B(φ)H
−1
s
(φ)(Ys − µ

s
(β)),

σ2[HB(φ)−HT
s,B(φ)H

−1
s
(φ)Hs,B(φ)]). (3)

These quantities can be estimated with Monte Carlo integration:

(µ̂B(β))k = L−1
k

∑

ℓ

µ(skℓ;β)

(ĤB(φ))kk′ = L−1
k L−1

k′

∑

ℓ

∑

ℓ′

ρ(skℓ − sk′ℓ′ ;φ)

(Ĥs,B(φ))ik = L−1
k

∑

ℓ

ρ(si − skℓ;φ)

We conduct this Monte Carlo integration using the technique of Bootstrapped Random Spatial

Sampling (BRSS) developed by Monogan and Gill (2016). Doing so allows us to forecast the

average ideology with:

µ̂B(β) + ĤT
s,B(φ)Ĥ

−1
s
(φ)(Ys − µ̂s(β)) (4)

We account for the spatial element by forecasting Ŷ (skℓ;β, σ
2, τ 2, φ) and using this quantity

in our Monte Carlo integration. With the nugget effect, from Y(s) = µ(s) + ω(s) + ǫ(s), we

also get Ys ∼ N (µ,Σ), where we still require: Σ = σ2H(φ) + τ 2I, H(φ)ij = ρ(φ, dij), and

dij = ||si − sj ||. Again, for this application the Gaussian semivariogram function was the best

fitting, meaning that our correlation function is H(φ)ij = exp(−φ2d2ij).

1.2 Why Proximity Matters for Public Opinion

Tobler’s First Law of Geography states: “Everything is related to everything else, but near

things are more related than distant things” (Tobler 1970, 236). Here we assume that this law

holds for individuals’ opinions and ideology, also, with more physically proximate Americans

holding a more similar political outlook. While there are physical barriers, such as highways

and rivers, that separate populations and therefore can change ideology dramatically, our

kriging approach connects these smoothly with no sudden shift.

Proximal influence in politics is supported Gimpel and Schuknecht who describes two

different approaches to understanding regionalism in this way (2003, 2-4). First Gimpel gives

a compositional approach asserting that political behavior is similar within a region due to

economic interests, racial origin, ethnic ancestry, religion, social structure, and other related

factors (Gastil 1975; Garreau 1981; Fischer 1989; Lieske 1993). Therefore if all of these factors
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could be included in an empirical model, then the variability with geographic units in the model

would be small. Clearly, though, it is often impossible to measure every relevant demographic

and socioeconomic variable, or even to identify every critical variable for inclusion. Since some

relevant inputs may be overlooked or unmeasured, we assume that neighboring individuals will

have a relatively similar political outlook, even holding included covariates constant. Second,

Gimpel gives a contextual approach that offers the idea that citizens’ political attitudes and

behaviors are influenced by political socialization and by interactions with other citizens in

their social network, which is supported by a large literature in political science (Putnam

1966, 1993; Huckfeldt and Sprague 1995; DeLeon and Naff 2004; Djupe and Sokhey 2011).

For instance, “the first place to look for political networks is within the immediate physical

proximity of each individual” (Sinclair 2012, 26). This means that we expect under the

contextual approach as well that geographically proximate individuals will have relatively

similar opinions, even in a general setting.

Furthermore, Erikson, Wright and McIver propose that, “the unique political cultures of

individual states exert an important influence on political attitudes” (1993, 48). This idea

goes as far back as Elazar (1966), who proposes that U.S. states can be categorized based on

an individualist, moralist, or traditionalist view of government’s role. Erikson, Wright and

McIver also demonstrate that a higher proportion of variance in ideology and partisanship is

be predicted by state-level dummies than by demographic information, although state-level

residuals will pick up some of the effects of unmeasured individual-level variables (1993, 56-68).

We also find evidence that this holds urban areas where political culture shapes the impact

of identity on public opinion and political participation, even in cities with heterogeneous

neighborhoods (2004, 703). Our method of kriging increases the ability to accurately model

the effects of political culture, omitted predictors, and social context by including weighted

neighbors’ residuals in forecasts of public opinion and ideology. For example, western Kentucky

and southeast Illinois are similar places that are likely to be populated with similar people,

both culturally and in demographic terms.

1.3 Data: 2008 CCES and 2010 Census

In this study, we use the 2008 Cooperative Congressional Election Study (CCES) as training

data to estimate our model of individual ideology as a function of demographics. The 2008

CCES offers 21,849 observations spread across the American states and congressional districts.

This survey asks respondents to place themselves ideologically on a scale from 0 to 100, with

0 representing the most liberal and 100 the most conservative. Our training model predicts
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responses as a function of age, education, race, sex, income, religion, urban-rural status,

homeownership, employment status, and a geographic trend term. CCES respondents were

located geographically by ZIP code. Our procedure for locating these respondents is described

in greater detail in the next section.

After estimating the training model over the CCES, we used 2010 Census data to forecast

the ideology of 250,000 simulated citizens throughout the continental United States. We

simulated by census block, the most precise geospatial unit the Census Bureau keeps track

of, drawing proportionally by the population of the block. We used Census Bureau maps of

census blocks to place simulated citizens in latitude and longitude (or more exactly in eastings

and northings), and we drew predictor values based on the variables’ local distribution for

that block.

The 11 million census blocks perfectly tesselate all higher-level geospatial indicators of

which the Census Bureau keeps track, so there are no gaps and no overlaps of areal units.

Hierarchically, blocks are nested within block groups, block groups are nested within tracts,

and tracts are nested within counties. When simulating covariate values for a kriged point,

if a predictor was not reported at the block level we drew from the most precise level for a

given location. More specifically, we simulate age, race, sex, and homeownership based on

block-level data. We simulate education and income based on block group-level data. We

simulate employment status based on tract-level data. We simulate religion and urban-rural

status with county-level data. By using the 2010 census block data, all of these predictors are

simulated with greater geographic precision and with more up-to-date data than in Monogan

and Gill (2016).

2 Innovations in Kriging for Measuring Public Opinion

Besides using more recent and more precise data, we offer two more methodological advances

for the technique of kriging to forecast public opinion. Specifically, past work did not include

estimates of opinion in Alaska and Hawaii because they are not contiguous with the rest of the

United States. In this article, we offer a solution to this problem and create new estimates for

these states and their component districts. Additionally, past work erroneously used Census

ZIP Code Tabulation Areas (ZCTAs) to locate survey respondents in state with their ZIP

code. We discuss why that is a problem and introduce new data that resolve this issue,

thereby creating better forecasts. We discuss each innovation in turn.
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2.1 Moving Noncontiguous States

Any method of measuring the ideology of public constituencies ought to be comprehensive

in covering all fifty states as well as all state legislative and congressional districts falling

within each. A major challenge of using spatial data analysis to measure public opinion in the

United States is that it is difficult to measure opinion in the non-contiguous states of Alaska

and Hawaii. In fact, measuring public opinion in these two states is often difficult anyway on

account of having few, if any, survey respondents in many national polls. Kriging, like many

methods of spatial analysis, requires observations to have neighbors. If we attempted to train

a kriging model using Alaska’s and Hawaii’s data as they are located on a map, then we would

have extreme geographic outliers that could distort the estimation of our spatial error process

model. This, in turn, would diminish our ability to make accurate predictions of opinion as we

turned to forecasts because the partial sill would treat ocean-distance as regular geographic

space and create a smoothed spatial surface over broad swarths of the Pacific Ocean and

Canada. When the goal is to understand and predict the opinions of American citizens, this

is not a sound substantive approach.

To address this, we proceed in two ways: First, when estimating the model itself, we omit

Alaska and Hawaii from the training data. Their extreme outlier values could unduly affect

the spatial variance components, so only the continental 48 states were included in the training

data. Second, when forecasting ideology in these two states, we relocate Alaska and Hawaii

to sit next to the west coast of the United States. Doing so greatly narrows the out-of-sample

space that falls within the convex hull of our forecasting space. That is, the areas that are part

of Canada, Mexico, or the Pacific Ocean that are included within the space of our smoothed

kriging surface are shrunken dramatically relative to a model that uses these two states at

their actual geographic location.

For the sake of forecasts, we locate Alaska and Hawaii near their ideological neighbors, or

locales on the west coast as similar as possible ideologically. To find these states’ ideological

neighbors, we estimated a training model on the continental 48 states and then chose the

locations off the west coast that minimized predictive error for the two discontiguous states

when using that model to predict Alaska and Hawaii’s observations in survey data. (Our

full process is described in more depth in Appendix A.) Figure 2 shows the result of our

procedure, illustrating how we relocated Alaska and Hawaii for the sake of the forecasting

data. Specifically, that map shows a dot at the location of each census block’s centroid (a

census block serving as our primary unit for sampling forecasting observations in kriging). The

census blocks for the continental 48 states are in black at their original locations in eastings
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and northings. The census blocks for Hawaii (in blue) and for Alaska (in red) are at their new

ideological neighbor locations in eastings and northings.

Figure 2: Map of census block centroids when Alaska and Hawaii are placed near

their ideological neighbors from kriging forecasts.

Substantively in Figure 2, Hawaii has been relocated so that Honolulu is an ideological

neighbor with San Francisco. Alaska has been repositioned so that Anchorage is located close

to Santa Barbara. These positions, again, are the positions that minimize forecasting errors in

the two discontiguous states, as detailed in the appendix. This allows each state to have a west

coast neighbor that is ideologically similar without producing any overlap between either state

and the continental states. In order to preserve area and point-to-point distances, the original

locations of census blocks (with Alaska and Hawaii at their actual locations) were reprojected

from longitude and latitude into eastings and northings first. After this reprojection, Alaska

and Hawaii were relocated to the positions shown on the map. This two-step process was

repeated for the training data (ZIP-code referenced CCES respondents) and for the forecast

data (census blocks with centroid coordinates). This solution of finding ideological neighbors

is far superior to the common solution to simply drop these two states from measurement

models: According to 2010 Census numbers, dropping these states would mean ignoring over

2 million U.S. citizens (710,249 + 1,360,301 = 2,070,550). It is possible to model these two

states separately, but that imposes the assumption that there is no influence back and forth

between these two states and the contiguous 48 states. Our solution is a compromise between

these two extremes that allows inclusion without deteriorating the quality of the total model.
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2.2 ZIP Codes versus ZIP Code Tabulation Areas

Prior kriging work placed survey respondents on a map using ZIP Code Tabulation Areas

(ZCTAs), as computed by the Census, when respondents’ geographic identifier was ZIP code.

Mechanically, if a respondent is known to reside in a geographic area, he or she has to be placed

at a specific coordinate using eastings and northings. This has been done by starting at the

centroid of the areal unit and jittering within the radius of the unit’s area. The problem

of doing this with ZCTAs when ZIP code is the true geographic identifier is that the area

of ZCTAs does not exactly overlap with the areas covered by ZIP codes themselves (Beyer,

Schultz and Rushton 2008; Grubesic and Matisziw 2006; Grubesic 2008). Hence, respondents

could be placed at a position on the map that puts them in the wrong ZIP code, adding

unnecessary measurement error to the model.

ZCTA
ZIP

Figure 3: Map illustrating non-overlap of an example ZIP code compared with

corresponding ZCTA.

Figure 3 illustrates the problem. This figure draws the real map of the 30601 ZIP code

in Georgia using data obtained by TomTom as well as the 30601 ZCTA using data obtained

from Census. The solid blue line shows the ZIP code boundary, and the dashed red line shows

the ZCTA boundary. As can be seen, if we knew a resident lived in the 30601 ZIP code but

placed them at a location in the ZCTA, we could make several mistakes. First, there are

observable points in the ZCTA that are outside of the ZIP code. In the east (right) and the

north (top) in particular, there are several places in the ZCTA that stray well outside of the

ZIP code. If we placed a survey respondent who identified 30601 as his or her ZIP code in one

of these portions of the ZCTA, we would have placed them in the wrong ZIP code. A second

problem that emerges is that the ZCTA does not cover all of the ZIP code. In the southeast
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(bottom-right) in particular, there is a large block of land where residents of the 30601 ZIP

code could live. If we proceed to locate these individuals using the ZCTA, then we have no

chance of putting them at the correct location on the map.

This problem emerges because of the nature of ZIP codes and how the Census has had to

deal as best as possible with the issue of investigators’ need of ZIP code-referenced demographic

data. ZIP codes themselves are not areal units with defined borders. Rather, ZIP codes are

routes defined by the U.S. Postal Service prescribing how to efficiently deliver mail. Hence,

there is no official map of where one ZIP code ends and the next begins. To create demographic

and geographic data by ZIP code (since it is a common locator recorded for Americans), the

Census Bureau created ZCTAs for the 2000 Census—mindful to warn users that ZIP codes

cross-cut even census blocks, the smallest geographic unit the Bureau records. As a best

alternative, the Census records the ZIP code that a majority of addresses in a census block

use. A ZCTA then is formed as a combination of all census blocks with the same majority

ZIP code. This is certainly an important tool that the Census Bureau provides, and in cases

in which demographics need to be measured by ZIP code it is the best alternative available.

However, residents who have a ZIP code that is held by a minority of addresses in their census

block will be placed in a ZCTA that differs from their ZIP code.

In our case, we only need ZIP code locations in order to locate respondents of the CCES

training data. Hence, we turn to a new alternative that deals with the issue of locating the

position of ZIP codes themselves in space. Specifically, we use a 2014 dataset that draws

from TomTom navigation services. This map defines ZIP code boundaries based on actual

addresses, drawing a border around the complete set of addresses with a particular ZIP code.

We therefore were able to compute the centroid and radius of actual ZIP codes and then

link this information to the CCES to place survey respondents in space. This allowed us to

estimate a model over our CCES training data that allowed for spatial correlation among

nearby respondents.

Importantly, we only use ZIP codes at the training stage of estimating the model. When

forecasting or kriging ideology, we use extremely precise census block data from the 2010

Census. At the forecasting stage, we can sample from the population using any geographic unit

we wish, as long as we know both the location of the unit and the distribution of demographic

predictors within that unit. A census block is the smallest possible geographic unit we can

sample from, with 11 million of them defined in 2010. By forecasting using census block data,

we can make predictions in places that are often as small as a city block using records of the

U.S. Census recorded from that small area to sample demographic predictors. This maximizes
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predictive accuracy and avoids the ZIP code question altogether at the predictive stage of

the model. Between the TomTom ZIP code data for the training stage and the U.S. Census

Bureau’s block data for the forecasting stage, we maximize the accuracy in estimation and

prediction.

3 Training Model with CCES Data

With Alaska and Hawaii moved to sit next to the west coast of the continental United States

and the survey respondents placed geographically by their actual ZIP code, we turn to the

estimation of our training model. As described before, we are estimating a model over the 2008

CCES, which we will then use to make forecasts with 2010 Census population data throughout

electoral constituencies in the United States. Our first step, then, is actually estimating the

spatial model with the CCES data. The full specification of our Bayesian model for the

training data is as follows:

Ys ∼ N (Xsβ,Σ)

Σ = σ2H(φ) + τ 2I

H(φ)ij = exp(−φ2d2ij) (Gaussian correlation function)

π(β) ∼ flat (5)

π(τ 2/σ2) ∼ Unif(6, 8)

π(σ2) ∼ 1/σ2

π(1/φ) ∼ Unif(0, 12000)

Here, Y refers to the individual’s self-reported ideology on a 0-100 scale, s refers to the individ-

ual’s location in eastings and northings, X refers to a vector of individual-level demographic

predictors of ideology, β is the vector of regression coefficients, Σ is the covariance matrix of

Y given the predictors, σ2 is the partial sill term, τ 2 is the nugget effect, H is the correla-

tion matrix of observations, φ is the decay term, and dij is the geographic distance between

observations i and j. Of note, the third line of the specification shows that each cell of the

correlation matrix is defined by a Gaussian correlation function: This means that the corre-

lation between observation i and observation j depends solely on the distance (dij) between

them as prescribed by the correlation function. Each coefficient (β) has a flat prior, the ratio

of the nugget to the partial sill has a uniform prior from 6 to 8 (based on our observation

that the nugget variance is about 7 times the partial sill variance), the partial sill itself has a
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(conservative) reciprocal prior, and the range term (1/φ) has a uniform prior from 0 to 12,000

kilometers.

Table 1: Bayesian Spatial Model of Self-Reported Ideology Using BRSS

Parameter Estimate Std. Error 90% CI
Age 0.1730 0.1618 [ -0.0950: 0.4377 ]
Education (six categories) -1.7418 2.8893 [ -6.5364: 2.9300 ]
Age×education -0.0189 0.0538 [ -0.1054: 0.0701 ]
African-American -8.9397 5.9852 [ -18.8885: 0.7519 ]
Nonwhite, nonblack -0.4998 4.8544 [ -8.3121: 7.6381 ]
Female -3.7610 2.4136 [ -7.8902: 0.0579 ]
African-American female 6.9816 7.8155 [ -5.6070: 20.0377 ]
Nonwhite, nonblack female -1.4811 6.7514 [ -13.1171: 9.0445 ]
Income ($10000-$14999) -3.0830 9.3233 [ -17.9325: 12.7183 ]
Income ($15000-$19999) -3.9677 9.8787 [ -20.4196: 12.1683 ]
Income ($20000-$24999) -0.5696 8.4009 [ -14.5332: 13.1658 ]
Income ($25000-$29999) -0.8421 9.3513 [ -16.6975: 14.0028 ]
Income ($30000-$39999) -0.5540 8.3337 [ -14.0389: 13.3959 ]
Income ($40000-$49999) -0.0847 8.2990 [ -13.5631: 13.8652 ]
Income ($50000-$59999) 0.2999 8.5763 [ -14.0713: 14.2191 ]
Income ($60000-$69999) -0.5245 9.0996 [ -15.7085: 14.2139 ]
Income ($70000-$79999) 1.6559 8.4463 [ -12.0908: 15.8484 ]
Income ($80000-$99999) 0.6219 9.0557 [ -14.0566: 15.5985 ]
Income ($100000-$119999) 0.6195 8.6163 [ -13.6012: 14.8625 ]
Income ($120000-$149999) 0.9644 9.1339 [ -14.0129: 15.9063 ]
Income ($150000 or more) -0.2145 8.2411 [ -13.4899: 13.6303 ]
Catholic 7.1849 2.9065 [ 2.3648: 11.9254 ]
Mormon 21.2255 7.8989 [ 8.1493: 34.1530 ]
Orthodox 6.6772 15.3959 [ -19.0482: 31.3295 ]
Jewish -5.3877 7.1392 [ -16.9935: 6.5644 ]
Islam -2.9257 21.4662 [ -38.0358: 32.5910 ]
Mainline 5.2233 3.5823 [ -0.6456: 11.1997 ]
Evangelical 16.1484 3.0724 [ 11.0782: 21.2105 ]
Ruralism (nine categories) 0.7858 0.6876 [ -0.4005: 1.8820 ]
Homeowner 4.9572 2.7090 [ 0.6070: 9.5330 ]
Unemployed -1.3962 5.0840 [ -9.9154: 6.7799 ]
Not in workforce -0.1537 2.4769 [ -4.1260: 4.0965 ]
Eastings 0.1292 2.5024 [ -3.9961: 4.1866 ]
Northings -2.3598 3.3950 [ -7.5980: 3.4632 ]
Eastings2 -0.4953 1.1702 [ -2.4270: 1.2934 ]
Northings2 -0.6886 3.5232 [ -6.4463: 5.0737 ]
Eastings×northings -0.3293 2.0707 [ -3.6050: 3.0592 ]
Intercept 47.0194 14.2282 [ 23.7830: 70.4446 ]
σ2 86.6253 8.8827 [ 73.2144: 102.0180 ]
1/φ 5922.7947 2843.5643 [ 1493.2441:10364.8758]
τ2 602.7219 34.1616 [ 547.3352: 659.6399 ]
Notes: N =21,849. Data from 2008 CCES.

Results based on 50 subsamples of 5% original data.
1,000 iterations were run for each subsample, for 100,000 total
Computed with the geoR 1.7-5.1 library in R 3.2.3.
Eastings and northings rescaled to megameters (Mm) in this table.
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We report the results of this model in Table 1. For each parameter in the table, the first

numeric column reports the mean of the marginal posterior distribution for the parameter,

which serves as a point estimate of our term. The second numeric column reports the standard

deviation of the marginal posterior distribution for the parameter, which serves as a standard

error. The last two columns report the 90% credible interval, meaning there is a 90% proba-

bility that the parameters falls within that range. The first 38 rows report summary statistics

for the regression coefficients included in the model. Our goal with this model is to maximize

predictive ability, so we include any predictor that is both known to predict ideology and for

which population data are observed. As the table shows, these predictors include age, educ-

tion, race, sex, income, religion, rural-versus-urban, homeownership, and employment status.

We also model trends in geographic space by including the respondents’ coordinates in east-

ings and northings in the model—in linear, interactive, and quadratic forms. The last three

rows of the table summarize the marginal posteriors for the three terms that characterize the

spatial error process: the partial sill (σ2), range (1/φ), and nugget (τ 2) terms.
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Figure 4: BRSS Estimated Semivariogram.

Figure 4 offers another illustration of how the spatial error process works given these

parameters. The horizontal axis of this plot represents the approximate distance between two

survey respondents’ locations. The vertical axis represents the semivariance of observations
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separated by this distance—again referring to either half the variance of the difference between

observed responses separated by that distance or the whole variance of undifferenced responses

separated by that distance when pooled together. The open black circles along the top show

the empirical semivariance of raw survey responses from the 2008 CCES. The blue crosses

show the empirical semivariance of residuals from an initial model estimated with OLS that

used the same predictors reported in Table 1.

Finally, the red line in Figure 4 shows the functional form of the Gaussian semivariance

function estimated in our full Bayesian model. This line is computed by assuming that the

nugget, range, and sill are at their mean values from the posterior distribution. As is the typical

case, the semivariance starts lower at more proximate values and rises as distance increases. A

low semivariance means that the correlation between observations is high, and similarly a high

semivariance implies a low correlation between observations. Our result therefore means that

in our forecasting model, the responses of nearby survey respondents will get greater weight in

predicting ideology at a particular location than the responses of farther survey respondents.

4 Forecasts of Public Ideology

With a training model of ideology in hand, we now turn to using this model to make forecasts

of public opinion throughout electoral constituencies following the point-to-block realignment

strategy described earlier. To implement this plan we proceed in four steps. First, we kriged

250,000 simulated citizens. These citizens were located in proportion to the population dis-

tribution in 11 million census blocks in 2010. This has the advantage of placing citizens in

locations reflective of the true population density, which later on will make it easier to cover

legislative districts that are compact in size. For each draw, we started at the centroid of

the census block and jittered from the block’s midpoint to the extent of the block’s radius.

This allowed us to place each simulated citizen in eastings and northings. As with the CCES

training data, Alaska and Hawaii’s census blocks were relocated to sit off of the continental

west coast.

Second, once we kriged a simulated citizen, we assigned this citizen covariate values con-

sistent with population data for the location. For each census block we know the block’s

distribution of age, sex, race, and homeownership, so we draw covariate values for the simu-

lated citizen in proportion to the local distribution. For other covariates, we have to go to a

higher level of aggregation, but we always use the most local possible distribution to simulate

covariate values. For instance, we simulate education and income based on block group-level
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data, and we simulate employment status based on tract-level data. We also simulate religion

and urban-rural status with county-level data, using government data besides the 2010 Census

(Grammich et al. 2012; United States Department of Agriculture 2013).

Third, we forecasted ideology for each simulated citizen using the model estimated over

the training data. This meant placing all simulated covariate values into the mean model.

Additionally, we use the spatial variance process model to predict a spatial error term for

each simulated citizen as a weighted combination of the training model residuals, with more

proximate training observations getting a higher weight. Fourth, we gathered all simulated

citizens falling within a constituency and used the average of their forecasts to compute a

district average ideology score. This allowed us to make forecasts for states, congressional

districts, upper chambers of state legislatures, and lower chambers of state legislatures.

4.1 Measures of Ideology and Validity Checks

Figure 5 presents our estimates of ideology in all 50 states. In both panels of the figure,

the horizontal axis represents our estimates for the average state ideology, with higher values

meaning more conservative. In Subfigure 5(a) the vertical axis represents the percentage of

the two-party vote that Obama won in 2012. Each state is represented by its two-letter postal

code, and the line represents the best fit from a regression that models Obama’s vote share as

a function of our kriged ideology scores. As the scatterplot and best fit line both show, there

is a close relationship between our measures of kriged ideology and presidential vote share,

which serves as an external validation of our scores.

Additionally, Subfigure 5(b) illustrates how well our measures of public ideology predict

the ideology of U.S. senators elected from these respective states. In this subfigure, the

horizontal axis again is our kriged measure of public ideology. The vertical axis the the

first dimension score of DW-NOMINATE, which frequently is used as a measure of member

ideology (McCarty, Poole and Rosenthal 1997; Poole and Rosenthal 1997). Republicans are

represented by a red “R” and Democrats by a blue “D.” The line represents a linear regression

predicting member’s NOMINATE score with public opinion ideology. As can be seen, more

conservative states are more likely to elect conservative members and more likely to elect

Republicans. Even within party, the scatterplot shows that within-party variance conforms

to expectations: moderate Republicans are elected from more liberal states, and moderate

Democrats are elected from more conservative states.

Figure 6 turns to the 435 districts for the U.S. House of Representatives and displays our

measure of public ideology by district. The horizontal axis displays our measure of public
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Figure 5: Scatterplots of 2012 presidential vote by state and 2011 U.S. Senators’

ideology, each against kriged measure of 2010 state public ideology.

opinion ideology by district, and the vertical axis represents each House member’s first dimen-

sion DW-NOMINATE score. Again, every Democrat is represented with a blue “D” and every

Republican is represented with a red “R.” The line shows the results of a regression of elected

members’ ideology as a function of district ideology. Even at this smaller level of geographic

precision, we still see that we can use an electorate’s ideology to predict whether those voters

will choose a Republican or Democrat and how conservative or liberal the member will be.

Again, moderate members of each party tend to be drawn from districts that normally would

not elect a member of their respective party. Hence, for both chambers of Congress, we see a

relationship between voters’ ideology and the ideology of their members. The fact that this

well-established electoral connection continues to be supported by our data further validates

our kriging approach.

Finally, we applied our kriging technique to constituencies as precise as state legislative

districts. Figure 7 illustrates our measures of constituency ideology in both lower and upper

chambers of the state legislatures. In both panels, the horizontal axis captures public ideology

with our kriging measure, while the vertical axis measures state legislators’ ideology with the

common space measure developed by Shor and McCarty (2011). In both panels, red dots

represent Republican legislators, and blue dots represent Democratic legislators. Districts

and legislators for lower chambers are presented in Subfigure 7(a), while upper chambers are
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Figure 6: Scatterplot of 2011 U.S. House of Representatives members’ ideology

against kriged measure of 2010 state public ideology.

presented in Subfigure 7(b). In each panel, the regression line shows a positive association

between electoral conservatism and legislator conservatism. So even at this most precise level

where many geographic constituencies are no larger than a neighborhood, our measures of

public opinion correspond to the electoral connection that we would expect for state legislators.

Hence, for many sizes of electoral constituencies, our measures of public ideology pass the

external validity checks we consider.

5 Full information Markov Chain Monte Carlo: Meuse

River Example

In this section we present an emerging improvement to our estimation strategy using an

example dataset of observed zinc levels in the Meuse River floodplain. One of the key limits

of our procedure so far is the estimator that we use. Recall from Figure 1 that in step (3.a)

we estimate our training model with bootstrap samples from the full data. When we estimate

the model with each replicate sample, we apply a five-step algorithm developed by Diggle and
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Figure 7: Scatterplots of 2011 state legislators’ ideology in lower and upper cham-

bers, each against kriged measure of 2010 state public ideology.

Ribeiro (2002, 141).3 First, we draw several values from a discrete version of the uniform

priors for τ2

σ2 and 1
φ
. Second, we estimate the conditional posterior distribution, p( τ

2

σ2 ,
1
φ
|Y) by

placing our draws from the discrete prior into the following formula:

p

(

τ 2

σ2
,
1

φ

∣

∣

∣

∣

Y

)

∝ π

(

τ 2

σ2

)

π

(

1

φ

)

|Vβ̃|
1

2

∣

∣

∣

∣

H(φ) +

(

τ 2

σ2

)

I

∣

∣

∣

∣

− 1

2

(σ̂2)−
n

2 , (6)

where Vβ̃ is the correlation matrix of the regression coefficients estimated with feasible gen-

eralized least squares (FGLS) using the current draw of 1/φ, n is the sample size, and σ̂2 is

an estimate of the partial sill based on residuals drawn from the FGLS coefficient estimates.4

All other terms are defined as before. Third, we draw a single set of sample posterior values

for τ2

σ2 and 1
φ
from (6). Fourth, we attach the set of sampled values to p(β, σ2| τ

2

σ2 ,
1
φ
,Y) and

compute the corresponding conditional posterior distributions as:

σ2|Y,
τ 2

σ2

∗

,
1

φ

∗

∼ χ2
ScI(n, σ̂

2) (7)

β|Y, σ2,
τ 2

σ2

∗

,
1

φ

∗

∼ N (β̃, σ2Vβ̃)

3See also Diggle and Ribeiro (2007, Chapter 7).
4Specifically, β̃ = (X′

H(φ)−1
X)−1

X
′
H(φ)−1

Y. Hence, Vβ̃ = (X′
H(φ)−1

X)−1. In addition, σ̂2 = 1

n
(Y −

Xβ)′H(φ)−1(Y −Xβ).
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The terms in these equations are again drawn from the FGLS estimates from the initial draw

of φ. After taking a draw from the scaled inverse χ2 distribution for the partial sill σ2, this

term is linked with the draws from the relative nugget and range terms when drawing the

regression coefficients from a normal distribution. By repeating the third and fourth steps to

generate a sufficiently large sample from each of the conditional posteriors, we build a sufficient

Monte Carlo sample to reflect the joint posterior for the full parameter set ( τ
2

σ2 ,
1
φ
, σ2,β).

Rather than using this Monte Carlo-FLGS iterative method, a better approach would be a

full-information Markov chain Monte Carlo estimator. To do this, we have programmed a new

Metropolis-Hastings estimator. To motivate this, we use a real data example. Specifically,

our applied example is an analysis of zinc levels in a floodplain of the Meuse River near Stein,

The Netherlands (Rikken and Van Rijn 1993).5 Suppose we specify our model as follows:

Ys ∼ N (Xsβ,Σ)

Σ = σ2H(φ) + τ 2I

H(φ)ij = exp(−φdij) (exponential correlation function)

π(β) ∼ MVN (0,∆) (8)

π(τ 2) ∼ G−1(η, ν)

π(σ2) ∼ G−1(α, ψ)

π(φ) ∼ G−1(ζ, θ)

In Equation 8, Y is the dependent variable, which is the logged level of zinc concentration

in topsoil (milligrams per kilogram). These data are located at sites s, which are recorded

in eastings and northings (both scaled in meters); however, we have rescaled the domain of

the data to form a unit square. X is matrix of predictors, which are also geolocated: In

this case a constant and the square root of the number of meters from the location to the

Meuse River are the two predictors. β is the vector of the two regression coefficients. Σ is

the variance-covariance matrix of errors, which is structured with nugget τ 2, partial sill σ2,

and decay term φ. The correlation of errors follows an exponential correlation function. The

regression coefficients, β have a multivariate normal prior. The nugget, partial sill, and decay

terms each have an inverse gamma prior.

With this model specified for our Meuse River data, we can form the joint posterior dis-

tribution of the parameters (β, τ 2, σ2, φ) by taking the product of the likelihood of Ys with

5This example was presented in Bivand, Pebesma and Gómez-Rubio (2008, Chapter 8).
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the priors of each of these four parameters. That is:

π(β, σ2, τ 2, φ|Y) ∝ f(Y|β, σ2, τ 2, φ)π(β)π(σ2)π(τ 2)π(φ). (9)

If we compute this product for the Meuse model of Equation 8 and then take the logarithm

of it, then we obtain the following log-posterior distribution:

ln(2π)−
1

2
ln |Σ| −

1

2
(x− µ)TΣ−1(x− µ) + (10)

ln(2π)−
1

2
ln |∆| −

1

2
βT∆−1β +

η ln(ν)− ln(Γ(η))− η ln(τ 2)− ln(τ 2)−
ν

τ 2
+

α ln(ψ)− ln(Γ(α))− α ln(σ2)− ln(σ2)−
ψ

σ2
+

ζ ln(θ)− ln(Γ(ζ))− ζ ln(φ)− ln(φ)−
θ

φ

Sampling from the log-posterior distribution is computationally simpler than using the original

posterior and yields equivalent results.

With the log-posterior distribution of Equation 10 we first proceed by running a hill climber

on the posterior distribution. This gives us good initial values and a sense of the uncertainty on

each parameter. We then proceed to run several iterations of a Metropolis-Hastings sampler.

This proceeds as follows:

1. Treat the estimates of the parameters from the hill climber as starting values: (β0, τ
2
0 , σ

2
0, φ0)

2. At the first iteration, simulate candidate values of the three variance terms (τ 2
′
, σ2′, φ′)

each using a draw from a gamma distribution that is based on initial estimates of the

respective term’s mean and error variance from the hill climber as well as a fixed tuning

parameter. Similarly, draw a vector of candidate regression coefficients (β′) from a

multivariate normal distribution based on the hill climber’s initial mean and variance-

covariance estimates of the regression coefficients.

3. Compare the value of the log-posterior of the new candidate values to the value of the

log-posterior with the starting values:

• If ln(π(β′, σ2′, τ 2
′
, φ′|Y)) > ln(π(β0, σ

2
0, τ

2
0 , φ0|Y)) then accept the candidate vector

(β′, σ2′, τ 2
′
, φ′) as the sample values for the first iteration (β1, σ

2
1 , τ

2
1 , φ1).

• If ln(π(β′, σ2′, τ 2
′
, φ′|Y)) < ln(π(β0, σ

2
0, τ

2
0 , φ0|Y)) then with probability

π(β′, σ2′, τ 2
′
, φ′|Y)/π(β0, σ

2
0, τ

2
0 , φ0|Y) choose the candidate vector (β′, σ2′, τ 2

′
, φ′)
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as the sample values for the first iteration (β1, σ
2
1, τ

2
1 , φ1). With the complementary

probability 1 − π(β′, σ2′, τ 2
′
, φ′|Y)/π(β0, σ

2
0, τ

2
0 , φ0|Y) retain (β0, σ

2
0, τ

2
0 , φ0) as the

sample values for iteration 1.

4. Repeat steps 2 & 3 for each iteration j of the sampler such that candidate parameters

(β′, σ2′, τ 2
′
, φ′) are compared to the prior iteration’s parameters (βj−1, σ

2
j−1, τ

2
j−1, φj−1)

in order to select iteration j’s parameter vector (βj , σ
2
j , τ

2
j , φj).

5. Stop at iterationM , a predetermined length of the MCMC chain. It would be advisable

to discard several of the early iterations in the chain as burn-in.

In this way, our Metropolis-Hastings algorithm ought to incorporate full information about

all parameters when sampling possible parameter values.

To illustrate how this procedure works, we present our results for the Meuse data in

Table 2. Recall that the dependent variable is logged zinc levels in the soil. The rows of

the table represent the parameters of the model: first the variance-covariance terms of the

nugget, decay, and partial sill, and then the two regression coefficients for the constant and

the root of distance to the river. Three models are presented: The first two numeric columns

show the estimate and standard error from a simple maximum likelihood model that has no

priors. The third and fourth numeric columns show the estimate and standard error if the

log-posterior distribution is optimized with a hill climber—meaning just the mode of the log-

posterior is found. The last two columns of the table show the mean and standard error found

when summarizing MCMC results from applying our Metropolis-Hastings algorithm to the

log-posterior distribution.

Table 2: Three Objective Function Estimates with Meuse Data
Log-Likelihood Posterior Mode Posterior MCMC

Parameter Est. S.E. Est. S.E. Est. S.E.
Nugget 0.0448 0.0308 0.0272 0.0366 0.0225 0.0191
Decay 18.2478 6.8334 24.3525 9.2716 25.1224 5.9875
Partial Sill 0.1445 0.0419 0.1547 0.0440 0.1654 0.0272
Intercept 6.9954 0.1206 6.9758 0.1106 6.9745 0.0779
Root of Distance -2.5823 0.2287 -2.5516 0.2128 -2.5488 0.1503
Notes: N=155. Final column presents summary statistics from MCMC chain.

100,000 iterations (after a burn-in of 10,000 iterations)

with an acceptance rate of 22%.

As Table 2 shows, for the regression coefficients the estimates are all pretty similar. For

both the intercept and the coefficient on the square root of distance, the second and third
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model (both of which use the log-posterior instead of the log likelihood) report coefficients

that are slightly closer to zero, but hardly different enough to be noticed. Namely, the negative

coefficient for square root of distance consistently hovers around -2.55 with a small standard

error, indicating that sites farther from the Meuse river on average have less zinc in the soil.

With the three variance-covariance terms, however, the story is different. The maximum

likelihood model presented first has a much bigger nugget, a much smaller decay term, and

a somewhat smaller partial sill term than the two models using the log-posterior. This is

notable because it implies that the log-likelihood model is attributing a larger share of the

error variance to non-spatial causes in the nugget. Meanwhile the bigger decay terms in the

log-posterior models specify a larger degree of spatial correlation among observations. This is

an important shift in the unexplained variance, and in a case of forecasting with kriging the

spatial variance terms are essential to making predictions. As a final and important point,

the smallest standard errors by far emerge from the Metropolis-Hastings sampler, shown in

the last column. While the standard errors are not grossly different among the three models,

actually summarizing the iterations of a Markov chain shows the tightest level of uncertainty.

In this section, we have described how our newly programmed Metropolis-Hastings algo-

rithm works for point-referenced geospatial models, and we have applied it to a model of zinc

deposits near the Meuse River. Our results are similar to what can be found with maximum

likelihood, albeit with smaller standard errors and an error variance structure that places

more weight on geospatial correlation. With this test example of 155 observations, we be-

lieve we have demonstrated that our new sampler works well and can be expanded to other

applications, such as our project of forecasting ideology.

6 Current Challenges

As the previous section may imply, we are still working through some challenges on this project.

To start, our Metropolis-Hastings algorithm for full-information MCMC is fairly new, and we

would like to use our own estimator when modeling and forecasting ideology. As a next step,

we would like to apply our Metropolis estimator to a subset of our ideology dataset, such

as all CCES observations from New York City (which has a manageable sample size of 568

respondents). Once we have successfully completed a test run with those data, we would like

to use the Metropolis sampler in step (3.a) from Figure 1. That is, we would like to continue

with the bootstrap procedure but use our estimator instead of the FGLS-Monte Carlo hybrid.

As another point on step (3.a), we would like to demonstrate with Monte Carlo analyses
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how effective this bootstrap procedure is and when it performs better or worse. With big

data, such as the 21,849 observations in the CCES, kriging models become computationally

intensive. All pairwise distances must be computed, and then correlations between each pair

of observations based on the distance and the value of the decay parameter (φ) must be

computed. Once all of this goes into a variance-covariance matrix of errors, that matrix must

be inverted. Importantly, in a Bayesian model this step must be completed with each iteration.

This is a big computation ask, so bootstrapping the sample makes the process considerably

more feasible. With the Monte Carlos, we hope to show applied analysts how to krige with

big data.

As a final point we are facing, the last step of the forecasting process can be computationally

intensive as well. When making forecasts for kriged points, for each point in geographic space

where a forecast of ideology is being made, the distance from that point to all observed points in

the training data must be computed. Then, using the values of the spatial variance-covariance

terms (σ2, φ), all of the training errors are given weights to predict a kriged error at the new

point. So for 250,000 kriged points and 21,849 training observations this produces over 5.4

billion distance calculations. Plus, to take full advantage of the Bayesian approach, for these

5.4 billion distances, 5.4 billion weights must be computed for each iteration of the MCMC

sampler. That allows the analyst to obtain uncertainty over the forecast.

Since that computational problem is wholly infeasible, we propose replacing the stage of

recomputing distances and weights with each forecast by instead finding a smoother function.

A smoother function can use a tangible number of parameters to reproduce with accuracy

what the kriged errors would be without making reference to the original training data. In

particular, thin plate splines are a promising avenue through which we can define the forecasts

purely with a multidimensional trend function and distances to a feasible number of knot points

(Wood 2003). The problem we have encountered so far is that existing programs for thin plate

splines either: (A) do not allow us to extract parameters in order to make forecasts without

referencing the original data, (B) do not allow the model to be fitted over a set of knot points

that is a subset of the data, or (C) have an error in a distance scaling algorithm. We may

have to program our own thin plate spline function to work around this and make the final

forecasting stage more feasible.
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7 Implications for the Applied Researcher

In this paper, we have described and implemented the method of Bayesian universal kriging

as a way of using survey responses to forecast public opinion in electoral constituencies. Using

the 2008 CCES and the 2010 Census, we have created measures of public opinion for the

year 2010 at several levels. In doing so, we have improved on past work with this method by

correcting a problem of misalignment between ZIP codes and ZCTAs, and we also have found

a means of incorporating Alaska and Hawaii into this type of measure. Using presidential vote

share and measures of legislative ideology, we verify that this measure behaves as it ought to

relative to other established measures in American politics.

Our resulting measures are now freely available for any researcher to use in his or her

own analysis. These new measures serve the practical researcher in several ways: First, by

releasing a measure for 2010 based on the most modern Census data, our measures are more

recent than many alternative measures, even measures taken for the state level. Second, our

measures capture ideology at multiple levels, serving as a means of capturing public sentiment

not only for the 50 states, but also congressional and state legislative districts. We know of

no other measure besides presidential vote share (which itself can be problematic, per Kernell

2009) that is available for all state legislative districts, so we have filled an substantial gap in

the measurement of political ideology at low levels of aggregation.

The approach of point-to-block realignment with universal kriging has the potential to

fill public opinion measurement needs in many ways. To start, the realignment of kriged

points into constituencies need not be to existing legislative districts. A natural extension of

this would be to allow users to draw hypothetical districts and extract public opinion in the

proposed new district—which would have applications for state legislative and congressional

redistricting. Another extension would be to expand this technique to allow ordinal responses

from the survey respondents, such as when a public opinion question is asked on a three, five,

or seven-point scale. Doing this would open up the possibility of forecasting ideology at the

four levels we consider in more years (when only limited versions of ideology questions are

available), and it would also allow for the creation of issue-specific public opinion measures

based on questions of this type. Finally, the modeled outcome does not necessarily need to be

ideology, any surveyed attitude with geocoded response is possible. Our approach can even

be applied to epidemioligical outcomes. For now, we have produced measures that researchers

can use for state-level, congressional-level, and state legislative-level research. However, we

believe there is an even more promising research agenda with Bayesian kriging that will enable

even better measures over time, space, and issue area.
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A Appendix: Finding Ideological Neighbors for Alaska

and Hawaii

Since Alaska and Hawaii are geographic outliers relative to the continental 48 states, it could

pose problems to estimate the model and forecast ideology with the states located as they are.

Such geographic outliers could exert substantial leverage over both the geographic trend term

and the smoothed error structure. Yet, we do want to forecast ideology for these two states

and these constituencies. As a result, we did a search for the states’ ideological neighbors. The

idea behind finding ideological neighbors is that we can determine what geographical locales

on the Pacific Coast work well as neighbors for the purposes of forecasting.

We searched for ideological neighbors for Alaska and Hawaii as follows: First, we estimated

a preliminary point-referenced data model using OLS regression and an error structure on those

residuals. In this initial model, we exclude Alaska and Hawaii from the training data. Second,

we consider a variety of locations along the Pacific Coast that might serve as ideological

neighbors for each state. For each possible location of the state, we compute the sum of

squared errors if we forecasted ideology in the CCES data for each state using the model that

was trained over the continental 48 states. We chose each state’s location based on which

locale minimized the sum of squared errors.

For each state, we considered a central block and started out by placing the state so that

its center was as the same northing as the southernmost point on the U.S. Pacific Coast.

For Alaska we set the eastings so that the easternmost point in Alaska could never overlap

with the westernmost point in the continental states. For Hawaii, we started off by setting

the eastings so that the easternmost point in Hawaii would not overlap with the westernmost

point of the continental states, but then moved Hawaii 75 kilometers closer: given how the

best fits for each state work this adjustment prevents Hawaii from sitting on top of either the

continental coast or atop Alaska’s new ideological neighbor position.

Figure 8 illustrates our comparative fit on this process. On each panel the horizontal axis

represents the distance from the southernmost point on the continental Pacific Coast, with 0

representing the point at the far south and larger numbers indicating kilometers northward

from there. The vertical axis on each panel represents the sum of squared errors (SSE) for

the out-of-sample predictions to that state from the continental model. The black solid line

represents the SSE for Hawaii at each position, and the dashed blue line represents the SSE for

Alaska at each position. The left panel shows all positions along the Pacific Coast, which were

considered in 50km increments. As that panel shows, 1,000km from the southernmost point
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the SSE starts rapidly increasing for both states, indicating that the fit becomes remarkably

bad if we place either state in the northwest. The right panel therefore focuses on the southern

side of the Pacific Coast, ranging from the southernmost point at 0km to 700km north of that.

For Alaska we see that the smallest SSE emerges 500km north of the U.S.-Mexico border, and

for Hawaii the smallest SSE emerges 450km north of the border.
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Figure 8: Sum of squared errors for forecasts of Alaska and Hawaii data for

positions along the Pacific Coast.

Using these placements, Figure 2 in the main text plots the centroids of the census blocks

we use for forecasting. The blocks for Alaska and Hawaii are now placed in their new ideological

neighbor locations based on the best out-of-sample fit. Hawaii is placed so that its central

census block is 450km north of the U.S.-Mexico border. Substantively, this places the island

of Oahu off the coast of the San Francisco Bay, meaning that Honolulu, HI and San Francisco,

CA are ideological neighbors. Alaska is placed so that its central census block is 500km north

of the border. Substantively, this means that Juneau, AK is situated just south of San Diego,

CA, which also puts the capital city as close as possible to Arizona and Texas for making

forecasts of ideology. Anchorage, AK, meanwhile is a bit north of Santa Barbara, CA. Moving

forward, when we forecast ideology for Alaska, Hawaii, and each state’s respective legislative

districts we use these new ideological neighbor locations.
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B Appendix: Data Sources

• Survey data of individual ideology in 2008: The Cooperative Congressional Elec-

tion Survey, Common Content, 2008. Accessed from http://hdl.handle.net/1902.

1/14003 on April 18, 2013 (Ansolabehere 2011).

• Population demographic data in 2010: U.S. Census 2010 block, block group, and

tract-level data. Dataset 2010 SF1a accessed from the National Historical Geographic

Information System, https://www.nhgis.org on October 13, 2015 (Minnesota Popula-

tion Center 2011).

• Census block centroids and area: U.S. Census TIGER shapefiles for 2010. Ac-

cessed from http://www2.census.gov/geo/tiger/TIGER2010BLKPOPHU/ on December

12, 2015.

• ZIP code centroids and area: USA ZIP Code Ar-

eas, 2014. TomTom data held by ArcGIS. Accessed from

https://www.arcgis.com/home/item.html?id=8d2012a2016e484dafaac0451f9aea24

on September 2, 2015.

• Religious affiliation by county: The 2010 Religious Congregations and Member-

ship Study, provided by the ARDA. Accessed from http://www.thearda.com/Archive/

Files/Descriptions/RCMSCY10.asp on October 15, 2015 (Grammich et al. 2012).

• Urban-rural classification continuum by county: United States Department of

Agriculture, 2013 measure. Accessed from

http://www.ers.usda.gov/data-products/rural-urban-continuum-codes.aspx#

.UfCK11OE4xc on October 15, 2015 (United States Department of Agriculture 2013).

• Ideology of members of Congress: Subset of Carroll, Lewis, Lo, McCarty, Poole, &

Rosenthal’s Common Space DW-NOMINATE scores. Restricted to first dimension for

112th Congress. Accessed from http://voteview.com on December 20, 2015 (McCarty,

Poole and Rosenthal 1997; Poole and Rosenthal 1997).

• Ideology of state legislators: Subset of Shor & McCarty’s June 2015 update of

individual state legislator database, focusing strictly on 2011 scores. Accessed from

http://dx.doi.org/10.7910/DVN/THDBRA on December 19, 2015 (Shor and McCarty

2011).
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C Appendix: Crosswalk Between Census State Legisla-

tive District Names and Full Names, New Hampshire

and Vermont

The 2010 Census files keep track of the state legislative and congressional districts that each

census block falls in. Congressional districts follow a numbering scheme or are easily identified

as a single at-large district. Most state legislative districts also follow a numbering scheme.

All of this allows for merging with information such as legislator ideology scores.

As an important exception, the states of New Hampshire and Vermont name state legisla-

tive districts based on the county they are in. For the sake of file size, the names of state

legislative districts are abbreviated in the Census files, though files such as the data by Shor

and McCarty (2011), use the full name of the district. For the sake of facilitating future merg-

ing work, we list a crosswalk that ties the abbreviations to the full district names. Table 3

lists districts for the New Hampshire House of Representatives, Table 4 lists districts for the

Vermont House of Representatives, and Table 5 lists districts for the Vermont Senate.
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Table 3: Crosswalk between Names of State Legislative Districts and Census

Bureau Abbreviations in the New Hampshire House of Representatives

Census Code District Name Census Code District Name Census Code District Name
101 BELKNAP 1 617 HILLSBOROUGH 17 001 SULLIVAN 1
102 BELKNAP 2 618 HILLSBOROUGH 18 002 SULLIVAN 2
103 BELKNAP 3 619 HILLSBOROUGH 19 003 SULLIVAN 3
104 BELKNAP 4 620 HILLSBOROUGH 20 004 SULLIVAN 4
105 BELKNAP 5 621 HILLSBOROUGH 21 005 SULLIVAN 5
106 BELKNAP 6 622 HILLSBOROUGH 22
201 CARROLL 1 623 HILLSBOROUGH 23
202 CARROLL 2 624 HILLSBOROUGH 24
203 CARROLL 3 625 HILLSBOROUGH 25
204 CARROLL 4 626 HILLSBOROUGH 26
205 CARROLL 5 627 HILLSBOROUGH 27
301 CHESHIRE 1 701 MERRIMACK 1
302 CHESHIRE 2 702 MERRIMACK 2
303 CHESHIRE 3 703 MERRIMACK 3
304 CHESHIRE 4 704 MERRIMACK 4
305 CHESHIRE 5 705 MERRIMACK 5
306 CHESHIRE 6 706 MERRIMACK 6
307 CHESHIRE 7 707 MERRIMACK 7
401 COOS 1 708 MERRIMACK 8
402 COOS 2 709 MERRIMACK 9
403 COOS 3 710 MERRIMACK 10
404 COOS 4 711 MERRIMACK 11
501 GRAFTON 1 712 MERRIMACK 12
502 GRAFTON 2 713 MERRIMACK 13
503 GRAFTON 3 801 ROCKINGHAM 1
504 GRAFTON 4 802 ROCKINGHAM 2
505 GRAFTON 5 803 ROCKINGHAM 3
506 GRAFTON 6 804 ROCKINGHAM 4
507 GRAFTON 7 805 ROCKINGHAM 5
508 GRAFTON 8 806 ROCKINGHAM 6
509 GRAFTON 9 807 ROCKINGHAM 7
510 GRAFTON 10 808 ROCKINGHAM 8
511 GRAFTON 11 809 ROCKINGHAM 9
501 GRAFTON 1 810 ROCKINGHAM 10
601 HILLSBOROUGH 1 811 ROCKINGHAM 11
602 HILLSBOROUGH 2 812 ROCKINGHAM 12
603 HILLSBOROUGH 3 813 ROCKINGHAM 13
604 HILLSBOROUGH 4 814 ROCKINGHAM 14
605 HILLSBOROUGH 5 815 ROCKINGHAM 15
606 HILLSBOROUGH 6 816 ROCKINGHAM 16
607 HILLSBOROUGH 7 817 ROCKINGHAM 17
608 HILLSBOROUGH 8 818 ROCKINGHAM 18
609 HILLSBOROUGH 9 901 STRAFFORD 1
610 HILLSBOROUGH 10 902 STRAFFORD 2
611 HILLSBOROUGH 11 903 STRAFFORD 3
612 HILLSBOROUGH 12 904 STRAFFORD 4
613 HILLSBOROUGH 13 905 STRAFFORD 5
614 HILLSBOROUGH 14 906 STRAFFORD 6
615 HILLSBOROUGH 15 907 STRAFFORD 7
616 HILLSBOROUGH 16
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Table 4: Crosswalk between Names of State Legislative Districts and Census

Bureau Abbreviations in the Vermont House of Representatives

Census Code District Name Census Code District Name
A-1 ADDISON-1 L-2 LAMOILLE-2
A-2 ADDISON-2 L-3 LAMOILLE-3
A-3 ADDISON-3 L-4 LAMOILLE-4
A-4 ADDISON-4 LW1 LAMOILLE-WASHINGTON-1
A-5 ADDISON-5 OG1 ORANGE-1
AR1 ADDISON-RUTLAND-1 OG2 ORANGE-2
B-1 BENNINGTON-1 OA1 ORANGE-ADDISON-1
B21 BENNINGTON-2-1 OGC ORANGE-CALEDONIA-1
B22 BENNINGTON-2-2 OL1 ORLEANS-1
B-3 BENNINGTON-3 OL2 ORLEANS-2
B-4 BENNINGTON-4 OLC ORLEANS-CALEDONIA-1
B-5 BENNINGTON-5 OLF ORLEANS-FRANKLIN-1
BR1 BENNINGTON-RUTLAND-1 R11 RUTLAND-1-1
CA1 CALEDONIA-1 R12 RUTLAND-1-2
CA2 CALEDONIA-2 R-2 RUTLAND-2
CA3 CALEDONIA-3 R-3 RUTLAND-3
CA4 CALEDONIA-4 R-4 RUTLAND-4
CAW CALEDONIA-WASHINGTON-1 R51 RUTLAND-5-1
C11 CHITTENDEN-1-1 R52 RUTLAND-5-2
C12 CHITTENDEN-1-2 R53 RUTLAND-5-3
C-2 CHITTENDEN-2 R54 RUTLAND-5-4
C31 CHITTENDEN-3-1 R-6 RUTLAND-6
C32 CHITTENDEN-3-2 R-7 RUTLAND-7
C33 CHITTENDEN-3-3 R-8 RUTLAND-8
C34 CHITTENDEN-3-4 RY1 RUTLAND-WINDSOR-1
C35 CHITTENDEN-3-5 W-1 WASHINGTON-1
C36 CHITTENDEN-3-6 W-2 WASHINGTON-2
C37 CHITTENDEN-3-7 W31 WASHINGTON-3-1
C38 CHITTENDEN-3-8 W32 WASHINGTON-3-2
C39 CHITTENDEN-3-9 W33 WASHINGTON-3-3
C35 CHITTENDEN-3-10 W-4 WASHINGTON-4
C-4 CHITTENDEN-4 W-5 WASHINGTON-5
C51 CHITTENDEN-5-1 W-6 WASHINGTON-6
C52 CHITTENDEN-5-1 W-7 WASHINGTON-7
C61 CHITTENDEN-6-1 WC1 WASHINGTON-CHITTENDEN-1
C62 CHITTENDEN-6-2 X-1 WINDHAM-1
C63 CHITTENDEN-6-3 X-2 WINDHAM-2
C71 CHITTENDEN-7-1 X31 WINDHAM-3-1
C72 CHITTENDEN-7-2 X32 WINDHAM-3-2
C-8 CHITTENDEN-8 X33 WINDHAM-3-3
C-9 CHITTENDEN-9 X-4 WINDHAM-4
EC1 ESSEX-CALEDONIA X-5 WINDHAM-5
EC2 ESSEX-CALEDONIA-ORLEANS X-6 WINDHAM-6
F-1 FRANKLIN-1 XB1 WINDHAM-BENNINGTON-1
F-2 FRANKLIN-2 XBY WINDHAM-BENNINGTON-WINDSOR-1
F-3 FRANKLIN-3 Y11 WINDSOR-1-1
F-4 FRANKLIN-4 Y12 WINDSOR-1-2
F-5 FRANKLIN-5 Y-2 WINDSOR-2
F-6 FRANKLIN-6 Y-3 WINDSOR-3
GC1 GRAND ISLE-CHITTENDEN-1-1 Y-4 WINDSOR-4
L-1 LAMOILLE-1 Y-5 WINDSOR-5

Y61 WINDSOR-6-1
Y62 WINDSOR-6-2
YO1 WINDSOR-ORANGE-1
YO2 WINDSOR-ORANGE-2
YR1 WINDSOR-RUTLAND-1
YR2 WINDSOR-RUTLAND-2
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Table 5: Crosswalk between Names of State Legislative Districts and Census

Bureau Abbreviations in the Vermont Senate

Census Code District Name Census Code District Name
ADD ADDISON LAM LAMOILLE
BEN BENNINGTON ORA ORANGE
CAL CALEDONIA RUT RUTLAND
CHI CHITTENDEN WAS WASHINGTON
E-O ESSEX-ORLEANS WDM WINDHAM
FRA FRANKLIN WSR WINDSOR
CGI GRAND ISLE
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