21st Century Political Methodology: Advances in All Modes of Empirical Analysis in Political Science

Robert J. Franzese, Jr. (franzese@umich.edu)

Professor & Associate Chair, Department of Political Science, Director, Program in International & Comparative Studies, Research Professor, Center for Political Studies, The University of Michigan, Ann Arbor

Fellow & 15th (former) President, The Society for Political Methodology

Prepared for Presentation to The Asian Political Methodology Conference, 5 January 2019

Some Comments on 21st Century Political Methodology

• An Exciting Time in Political Methodology:

- Rapidly Advancing EMPIRICAL METHODOLOGIES for
- Increasingly Sophisticated THEORIES, with
- Seemingly Unbounded Potential DATA Richness.

• Modes of Empirical Analysis in Political Science:

- Testing of Causal Theory
 - Ideal & Gold Standard=Experimental RCT
 Optimal to gauge evidence for *existence* of causal effect
- Description & Measurement, Classification, & Forecast/Prediction
 - Ideal=Consistency & Accuracy, Performance relative to Expert; Gold Standard=Out-of-Sample (Forecast) Error
- Empirical-Model & Causal-Response Estimation
 - Ideal=Empirical Model is Useful Empirical Simplification; Gold Standard=Out-of-Sample (Causal-Response) Error
- Kinds of Empirical Questions:
 - Factual: e.g., what % of population supports incumbent? (physical=statistical population)
 - Theoretical: e.g., what explains support incumbent? (stat.pop.=hypothetical, infinite)
 2019 Asian Political Methodology Conference
 Slide 2 of 54
 Franzese (5 January 2019)

Exciting Times: Increasingly Sophisticated Theories

- Paradigm: a shared set of assumptions & accepted theories in a scientific field.
 - Once a theory has become established as part of scientific knowledge in a field of study, researchers can build upon foundation that theory provides.
 - Scholars who study evolution of scientific fields of research lively & ongoing debate about where social sciences, political science, are in development.
 - The more-skeptical argue Political Science not sufficiently mature to have paradigm...
- A quick look at some of most developed & substantiated:
 - Voter Participation: know lot re: what sorts people vote & why voterparticipation rates higher in some democracies & elections than in others
 - Economic Voting: know incumbents presiding over stronger economic times tend to do better in elections than incumbents presiding over weaker
 - Electoral Cycles: know incumbents .: incentives to try deliver voters stronger economic performance & other material benefits around election times and .: that policies & outcomes tend to exhibit electoral periodicity

Voter Participation: know lot re: what sorts people vote & why voter-participation rates higher in some dem's & elect's than others

Voter Participation in 21 Developed Democracies

Cross-Country Variation is 89.7% of Total

Most of story cross-country differences then.

Voter Participation: Who & How Many Vote?

 $Pr(Vote) = f\left(pr\{pivotal\} \times \left[X_p - X_a\right] + B - C\right)$

Competition Increases Turnout: Win Margin Over Turnout

<u>Sources:</u> Virginia State Board of Elections. Results from 2003-2007. Iowa Secretary of State. Results from 2002-2006.

(Bottom-left: by voters/machine) (Bottom-right: by education (& by race))

2019 Asian Political Methodology Conference

Voter Participation: Who & How Many Vote?

	Within	country	Panel corrected		
Variable	Ь	SE	Ь	SE	
Constant	25.06	(3.93)**	52.63	(2.14)**	
Majority status (0–50%)	-0.13	(0.04)**	-0.16	(0.04)**	
Margin of victory (0–70%)	-0.06	(0.04)*	-0.08	(0.03)**	
Time since last election (0.6–5)	0.52	(0.18)**	0.37	(0.14)**	
Disproportionality (1-20)	-0.01	(0.04)	-0.06	(0.04)	
Compulsory voting (0,1)	5.99	(1.99)**	10.92	(0.76)**	
Postal voting (0,1)	4.07	(1.96)**	6.79	(0.84)**	
Weekend voting (0,1)	-1.57	(0.89)	-0.26	(0.54)	
Size of electorate (million)	-0.01	(0.01)	-0.04	(0.01)**	
Electoral salience (0,1)		s absolomia n	25.46	(2.06)**	
Turnout,	0.66	(0.04)**		Can in the L	
Missing margin (0,1)	-5.59	(1.66)**	-5.89	(1.58)**	
Adjusted R ²	0.506		0.709		
N	403		436		

TABLE 8.3 Effects on Individual-Level Electoral Participation in 22 Countries

	Individi On	ual Level ly	With Na Effec Consia	tional ts lered	With Missing Data Indicators	
Variable	b	SE	b	SE	b	SE
Constant	.636	.017*	.065	.022	.069	.022
Age	.064	.002*	.063	.002*	.062	.002*
Strength of party identification	.010	.004	.040	.004*	.039	.004*
Political discussion	.097	.006*	.091	.006*	.093	.006*
Education	.005	.003	.025	.003*	.025	.003*
Religious participation	.008	.004	.024	.005*	.030	.004*
Union member	081	.006*	023	.006*	024	.006*
Income	.001	.001	.004	.009*	.004	.001*
Average country effect			.478	.017*	.489	.017*
Missing religious participation					041	.009*
Adjusted R^2	.055		.195		.195	
N	21,601		21,601		21,601	

Franklin, in Comparing Democracies Franzese (5 January 2019)

TABLE 7.5 Two Models Explaining Turnout Variations in 31 Countries, 1945–1999

Economic Voting: know incumbents presiding over stronger economic times tend to do better in elections than incumbents presiding over weaker

Figure 1. Bread and Peace Voting in US Presidential Elections

Duch & Stevenson, The Economic Vote

$$logit(\pi_{ik}) = \beta_{0k} + \beta_{1k} X_{ik} + \sum_{j=1}^{J_k} \phi_{jk} Z_{jik}.$$
 (1)

In this notation, v_{ik} indicates a vote for the chief executive party by voter *i* in each of *k* ection surveys where $i = 1 \dots n_k$. Likewise, X_{ik} are retrospective economic evaluations easured at the individual level and Z_{iik} are other characteristics of individuals that shape

2019 Asian Political Methodology Conference

3.1 A map of economic voting for the party of the chief executive. The upper bound of on Slide 7 of 54

Economic Voting: Increasingly Sophisticated Theories

 Electoral Cycles: know incumbents incentives try deliver voters 1 economic performance & other benefits around election times & ... that policies & outcomes tend to exhibit electoral periodicity

FIGURE 2-3 QUARTERLY CHANGES IN VETERANS BENEFITS

Electoral Cycles: Increasingly Sophisticated Theories

E

Openness, Exchange-rate Regime, & Crl. Bank Indep.

$$\begin{aligned} (\pi) &= B_0 + \beta_e E \beta_\pi \pi_a + (1 - \beta_e E) \\ & \left\{ \begin{bmatrix} (\beta_{gp} GP + \beta_{ey} EY + \beta_{up} UP + \beta_{be} BC + \beta_{aw} AW + \beta_{fs} FS \\ + \beta_{te} TE + \beta_a \pi_a) \\ (1 - \beta_{c1} C) + \beta_{c1} C \beta_{c2} \\ (1 - \beta_{sp} SP - \beta_{mp} MP) + \beta_{sp} SP \beta_{\pi*} \pi_{sp} + \beta_{mp} MP \beta_{\pi*} \pi_{mp} \end{bmatrix} \end{aligned} \end{aligned}$$

$$\frac{\partial \pi}{\partial x} = (1 - \beta_E E) \cdot \left\{ (1 - \beta_p P) \cdot \left[(1 - \beta_c C) \cdot \beta_x \right] \right\}$$

	E=0.40			E=0.65			E=0.90		
	SP=MP=0	MP=1	SP=1	SP=MP=0	MP=1	SP=1	SP=MP=0	MP=1	SP=1
	Estima	ated Impa	ct of 1-Un	it Rightward	d Shift in (Governme	ent Partisan	ship (dπ/	dGP)
0.26	-0.359.17	-0.281.15	-0.000.02	-0.311.15	-0.243.13	-0.000.02	-0.262.12	-0.206.11	-0.000.01
CBA = 0.46	-0.257.12	-0.202.10	$-0.000^{.01}$	-0.223.10	-0.174 ^{.09}	-0.000.01	-0.188.09	-0.147.08	$-0.000^{.01}$
0.66	-0.156.07	-0.122.06	$-0.000^{.01}$	-0.135.06	-0.106.05	$-0.000^{.01}$	-0.114.05	-0.089.05	$-0.000^{.01}$
			Estimated	Impact of a	ı Post-Ele	ction Year	$(d\pi/dEY)$		
0.26	$\pm 1.563^{.79}$	$+1.224^{.61}$	$+0.000^{-09}$	$\pm 1.352^{.69}$	$+1.059^{.53}$	$+0.000^{-07}$	$+1.142^{.60}$	$+0.894^{.47}$	$+0.000^{-06}$
CBA= 0.46	$+1.120^{-57}$	$+0.877^{.44}$	$+0.000^{-06}$	$+0.970^{-50}$	$+0.759^{-39}$	$+0.000^{.05}$	$+0.819^{-44}$	$+0.641^{.34}$	$+0.000^{.05}$
0.66	$+0.678^{.37}$	+0.531.29	$+0.000^{.04}$	$+0.587^{.32}$	$+0.459^{25}$	$+0.000^{.03}$	$+0.495^{.28}$	$+0.388^{-22}$	$+0.000^{.03}$

Causal Inference for Theory Testing

- Yes, but are any of these relations b/w these characteristics of individuals & elections and participation, e.g., *causal*?
- Neyman-Ruben Causal Model:

Causal Effect = $Y_{it}(X = 1) - Y_{it}(X = 0)$

- Fundamental Problem of Causal Inference...
 - Compare *Treatment & Control Groups* such that identical in all ways except treatment status &, potentially, outcome.
 - Need rule out: (a) that Y⇒X (endogeneity, reverse causality) and (b) that some Z⇒Y and Z→X (spuriousness).
- SUTVA: (conditions for *internal validity* of experimental causalinference by difference means treatment & control group)
 - The probability one unit receiving/taking treatment, the (constant) magnitude of the treatment, & the effect of treatment independent of each other & of any other unit(s) receiving/taking treatment, sizes of treatments, or effects of treatments in those others.
- "The 2 most common ways in which SUTVA can be violated [seems] when

 (a) there are versions of each treatment varying in effectiveness or (b)
 there exists interference between units" (Rubin 1990:282).

Strateg*ies* for (Distinctly) Identifying $X \Rightarrow Y$ from $Y \Rightarrow X$ and from $X \Rightarrow Y \& Z \rightarrow X$

- Logical Impossibility: Occasionally can rule out *a priori* (few Y could logically cause race or gender X, e.g.)
- Temporal Precedence: (poor man's exogeneity) If X before Y, then Y cannot ⇒ X. (potentially problematic in social-science contexts; highly susceptible to specification error)
- System Specification: if can specify how $X \Leftrightarrow Y$, can get both/all $X \Rightarrow Y \& Y \Rightarrow X$.
- Instrumentation: if can establish some V→X but not V⇒Y, except via V→X and X⇒Y, then can use E(X|V)⇒Y.
 - By selves, above not nec'ly block spuriousness (left to statistical control by partialing).
- Experimentation: researcher <u>control & randomize</u> X ⇒
 - Y cannot ⇒ X (b/c controlled), & no Z↔X, even unknown Zs (b/c X randomized) ⇒ not spurious
 - Create Pseudo-Experimental Conditions from Observational Data:
 - **Discontinuity Design:** idea = near cutoff value some indicator, above which X=1 & below X=0, random whether obs. above or below. [sorting; balance failure]
 - Matching-Based Inference: idea = if can measure all relevant Z, compare Y|X=1 & Y|X=0 for groups balanced (equal distributions) of all Z. [(=statistical control on steroids); fail if SUTVA violated (i.e., not clear if/how redress possible Y⇒X); not control unobservables]
 - **Difference-in-Difference:** idea = differencing (Y_{it+1}-Y_{it}) nets *all* constant obs-specific *Z*...

Experiments, the RCT

• Experiments & Nonparametric Causal-Inference:

- Because treatment, X, (a) <u>randomized</u> & (b) <u>controlled</u>:
 - (a) will not correlate with any other Z (theoretically, in limit),
 - (b) cannot be caused by Y, because researcher controls (causes) it.
- Also, insofar as Causal Effect $\equiv Y_{it}(X=1) Y_{it}(X=0)$
 - Nonparametric, & so independent of functional form for $X \Rightarrow Y$ (and also of controls).
- Much advance in observational studies designed to yield pseudoexperimental conditions for this potential-outcomes framework causal 'effect', and yet, some Limitations/Insufficiency of Nonparametric Causal-Inference, to begin for example:
 - "Experiment will have nothing whatsoever to say about other causes. What it will do, and do well, is to determine <u>whether</u> [...treatment...] had a positive or negative effect, or none at all..." (K&W; emph. added)
 - ...<u>ideal to establish that causal effect exists</u>, not nec'ly great estimating that effect or gauging its substantive magnitude, especially relative to other causes.
 - ...although some advances in this latter direction: <u>conjoint analysis</u>.
 - <u>Heterogeneous effects</u> (e.g., nonlinearity, context conditionality) (*next*);
 <u>External Validity... (later)</u>; Dynamics & Interdependence, etc.
- Will return to limitations & considerations other modes, but first an example

A Discontinuity-Design Test of Causal Effect of Left-Government on Govt-Bond Yields

• A Discontinuity:

• No discontinuities other possible X:

Discontinuity-Design Test & 'Effect' Estimate:

• 'Dynamic' & Heterogenous Effect Estimates:

For Some Purposes, Causality is Irrelevant:

Measurement, Description, Classification, Prediction

Particularly for Factual, as Opposed Theoretical, Questions...

- Data Resources Booming:
 - Event Data, CLEA, & web scraping, satellite imagery, social media, ...
- Measurement Methodologies Advancing:
 - IRT & Bayesian Ideal-Point Est.
 - Network Measures
 - MR & MRS P 🔸
 - Scaling & Classifying Text, Sentiment Analysis
- Advances in Visualization
- Prediction:
 - Bayesian MLM & relatives (AMEN, e.g.)
 - Bayesian Model Averaging, Ensemble Methods
 - AI: Supervised, Unsup., & Deep Machine Learning, Natural Language Processing

For Some Purposes, Causality may be Irrelevant: Measurement, Description, Classification, Prediction

Particularly for Factual, as Opposed Theoretical, Questions...

- Data Resources Booming:
 - Event Data, CLEA, & web scraping, satellite imagery, social media, ...
- Measurement Methodologies Advancing:
 - IRT & Bayesian Ideal-Pt. Est.
 - Network Measures
 - MR & MRS P
 - Scaling & Classifying Text, Sentiment Analysis
- Advances in Visualization
- Prediction:
 - Bayesian MLM & relatives (AMEN, e.g.)
 - Bayesian Model Averaging, Ensemble Methods
 - AI: Supervised, Unsup., & Deep Machine Learning, Natural Language Processing

abecky et al. (ECB Wrkng Pap 2012) Model Inclusion Based on Best 5000 Models ...but in addition to *Causal Inference*, testing for existence of causal effects, & to Description/Prediction, another important aim/mode of empirical analysis: *Empirical-Model & Causal-Effect Estimation*

- The Fundamental Challenges of Empirical Analysis
- The Socio-Politico-Economic Reality we study is Characterized by:
- Multicausality: Just about everything matters...
- (Heterogeneous Effects &) Context Conditionality: how just about everything matters depends on just about everything else...
- (Temporal, Spatial, & Spatiotemporal) Dynamics: just about everything is moving, not static...
- Endogeneity: just about everything causes just about everything else.
 - (*Micronumerosity*: ...& we usually have far too little empirical information to figure it all out; n.b., useful variation, not exactly number of observations)
 - (The target (truth, estimand) is moving, but that's just unobserved 2. again...)

A Collection of Concerns about Some Current Fashions in Social-Science Empirical-Research Methodology

- On limits experimentalism as standard for all empirical research in social science.
 - Or why observational research can be a *first* choice (not just when can't do experiment).
 - Out-of-Sample Error: an alternative (better?) gold standard.
- Beyond Causal Inference & Toward Causal Estimation
 - Effect Heterogeneity

 possible.
 - **Dynamics**: highlight difference b/w inferring the existence of a causal effect of treatment & estimating outcome response caused by shock. Cannot estimate latter w/o a (dynamic) model.
 - Simultaneity: when x riangle y, "nonparametric causal inference" paradoxically estimates causal parameters, and <u>not</u> causal responses. Cannot estimate latter w/o (system-of-eqtns) model.
- On Empirical Models & Why We Both Need & Want Them
 - Curse of dimensionality & logical impossibility fully model-free/nonparametric estimation.
- To FE or Not To FE (a usually not Mostly Harmless question)
 - "Fixed Effects" cost much more than "mere inefficiency".
 - The limitations of FE likely inherited by FE-like causal-inference strategies...
- In *Social* Phenomena, interdependence, interconnection endogeneity, and/or interdependence by endogenous interconnections (coevolution), imply not-SUTVA.
 - Even on own turf of identifying causal effects, let alone trying estimate causal responses, nonparametric causal-inference tends biased for *social* phenomena (by Rubin's own admission).

On the limits of experimentalism as the standard for <u>all</u> empirical research in social science.

- In the bible according to Freedman, Pisani, & Purves...
 - Chpt. 2 extols virtues of experimentation; which are two & great:
 - Rules out reverse causality, $Y \Rightarrow X$, because researcher controls X;
 - Rules out confounds, even unobserved ones (in large-samples), because randomized X.
 - [I suspect already here we can raise some doubts: when double-blind randomization is assumed vindicated b/c doctors who know health of patients & nature of their ills yielded better surgical results whereas blinded ones not significantly so...suggests effect heterogeneity that Doc's know & would also use in actual application.]
 - Ch. 3 warns dangers observational research, lacking those 2 great virtues
 - Interesting pattern develops however...each example observational-study conclusion is overturned later by...
 - ...another observational study! [with <u>argument</u> that better designed]
 - The examples have also shifted from primarily medical in chapter 2 to primarily epidemiological in chapter 3, and epidemiology, like (macro)economics [& political-science!], "is not an experimental science" [Sims 2010].
 - ...because causality is ultimately a theoretical, not an empirical, matter

On the limits of experimentalism as the standard for *all* empirical research in social science.

• More fundamentally, we know external validity is problematic

• Standard Concerns:

- External Validity of Samples: non-representative
- External Validity of Treatment: one of the *Princess Bride* problems...
- Plus, External Validity of Context:
 - Imbens (?2010? "Better LATE than nothing"): cannot imagine situation where could run experiment, and would prefer not to. I can!
 - E.g., Korea & Vietnam Wars era U.S. fighter-jet tests got kill ratio totally wrong.
 - [Silly argument about whether internal or external validity lexically primary: some claim that w/o internal validity don't care external; silly b/c want both of course, but if going to argue, obvious that only defensible position is opposite: external w/o internal still value in out-of-sample correlations; internal alone of only esthetic or historical interest, not theoretical scientific but factual descriptive]
- Problem: by design, arising from their very causal-identification virtues, experiments [& related observational methods] tend to yield poor estimates of effects, understood as responses of y to exogenous movements x:
 - In a system with $x \Leftrightarrow y$, we know that $dx \Rightarrow dy \Rightarrow dx$...
 - The well-designed experiment, & methods designed to isolate the impact of x on y, like single-eqtn 2SLS or RDD, by design, get only that initial impulse to y...
 - ...so, by design, they give lousy estimates of response of y to some exogenous impulse to x. [Some relevant math will be shown up-close later...]
 - [Not design trumps control but general equilibrium trumps partial equilibrium.]

On the Limitations/Insufficiency of the Nonparametric, Experimental, Potential-Outcomes-Framework, Causal-Inference Paradigm for Social Science

- Ideal for testing, for evaluating empirical evidence for <u>whether causal-effect exists</u>
- <u>Not necessarily for estimating causal effects, understood as dy/dx, how outcomes of interest respond to some cause(s)</u>
- External Validity: of sample..., of treatment..., & of context...
 - [In fact, strictly under paradigm, cannot infer away from support (even though that often the point!).
 - At worst: one obtains cleanly identified estimate of the causal effect of a treatment that could never be applied, in a context that could never obtain, about which we didn't care in the first place...]
- Multicausality ⇒ poor gauge effect size, especially relative to others: that's what multiple-regression control is about; conjoint experimentation offers some progress.

Effect Heterogeneity & Context Conditionality:

- Neyman-Holland-Rubin causal model, is a <u>model</u>: 'effects' as estimated = additive, constant, separable.
 - E.g., **nonlinearity**: e.g., substance dictates that for binary outcomes, probabilities, or proportions, Y is sigmoidal *f*(X):
 - A model of probabilities that doesn't respect these first principles (taper toward 0-1 bounds, steeper somehow between) not yield very good estimates for *external* inference (i.e., beyond estimation sample, and esp. not beyond support). (& std NHR⇒dp/dx=c)

ATE's ain't where it's at when world ain't straight.

Interactions, the effect of X on Y depends on Z, and vice versa, similarly challenging for a non-parametric framework.

Franzese (5 January 2019)

Some Fallacies in Our Understanding of the Nonparametric Causal-Inference

• The Model of the Neyman-Holland-Rubin Causal Model: Simple not nec'ly = weak, unrestrictive

- Discrete, Additive, Separable (within & across obs.) Effects of Causes.
 - **Discrete:** to allow interval-valued treatments would be structural. I.e., as applied, inter alia, we are going to select group w/in which treatment homogenous, and simply difference means that v. other groups.
 - Additive: mean differencing tends to suffice for the intended purpose (essentially: control), only for linear, purely separable effects
 - Separable: So model is a flat line, unconnected to any other treatment's (i.e., treatment of different size, sort, or context) flat line.
- That's surely a model, incredibly simplistic, yes, but in many ways an extremely strong one. &, as always, insofar as model misspecified, estimates will have poor properties
 - Keane (*JEconometrics* 2006): "criticism of structural econometric work is that it relies on 'too many' assumptions. In fact, I have often seen structural work dismissed out of hand for this reason. In contrast, many believe 'simple' empirical work is more 'convincing.' I readily concede that the typical structural estimation exercise relies on a long list of maintained *a priori* assumptions. But we are kidding ourselves if we think 'simple' estimators don't rely on just as many [or as-strong] assumptions."
 - I.e., the design (& what's done with its estimates) *are* the model. (You say *design*, I say *specification: Toe-May-Toe, To-Mah-Toe.*) Hard to see how this <u>necessarily</u> any less "model dependence" or any less risk of arbitrariness in this model rather than some other.

Matching as a Causal-Inference Strategy:

- Matching is just regression control on steroids: latter controls linear-additive-separable affects of X_c, former controls any separable effects of X_c. As such:
- Matching per se is not a causal-identification strategy; to get causal-parameter estimates, must both observe X_c & assume them exogenous (pre-treatment), just like regression.
- Given potential arbitrary effect-heterogeneity, fully nonparametric estimation impossible

An Alternative Approach Suited to <u>Causal-Response Estimation</u>:

Theory/Substance-Based Empirical Modeling

So what to do with Complex Context-Conditionality? Empirical Models of Theoretical Intuitions (EMTI):

- Core Implication Theory: $\mathbf{y} = f(\mathbf{X}, \mathbf{B}, \boldsymbol{\varepsilon}) \underset{\text{if sep.}}{\Rightarrow} E(\mathbf{y}) = f(\mathbf{X}, \mathbf{B}), \boldsymbol{\varepsilon} \sim g(\boldsymbol{\varepsilon})$
 - EMTI emphasizes far too little typically drawn from theoretically implied $f(\cdot)$, $g(\cdot)$
 - Theoretical model or intuitions and substance tend suggest more about some specific $f(\cdot)$ than, & not always or even often, that linear-additive.
 - Usually theory used just to suggest x as arg's, entered linear-additively by default, to regression/likelihood. (Or, worse, some T to isolate for causal-effect inference.) Hypotheses confined to first *partial* derivatives, not responses.
- EMTI \Rightarrow *Model it!* TM...& then, when modeling it:
 - Specification* is everything.

principle $cntrl \times p$ action

- * Note: specification (or design) includes measurement & identification strategy.
- Example: Two Hands on Wheel (shared policy-control)
 - $y = c(p) \times f(\mathbf{x}_p) + [1 c(p)] \times g(\mathbf{x}_a) \implies \text{many interesting things...}$

agent control \times agent action

• E.g., the effect on y of any $x \in (\mathbf{x}_p \cup \mathbf{x}_a)$ to which principle & agent would respond differently, depends on c(p)...

2019 Asian Political Methodology Conference

Slide 23 of 54

Franzese (5 January 2019)

An EMTI Strategy for the Pervasive, & often Complex, Context-Conditionality of SocPolEco Reality

• Empirical Modeling of Theoretical Intuitions:

- Theory & substance indicate what sort of random variable makes sense as type for outcome.
- Random variables have distributions/densities; those have parameters that correspond to aspects of interest about that RV (outcome).
- Substance suggests an appropriate form for such a parameter and theory suggests a model linking explanators (covariates) to those parameters by such a function.
- If first & second moments additively separable, least squares is an available & effective estimation strategy. If not, maximum likelihood is available & effective, and almost as simple if observations conditionally (on model) independent.

Least-Squares Estimation: $E(y) = f(\mathbf{x}, \boldsymbol{\beta}) \Rightarrow Min(\mathbf{y} - f(\mathbf{x}, \mathbf{b}))'(\mathbf{y} - f(\mathbf{x}, \mathbf{b}))$

substance & theory

Maximum-Likelihood Estimation:

 $p(y_i | \boldsymbol{\theta}), \text{ cond'l indep} \Rightarrow p(\mathbf{y} | \boldsymbol{\theta}) = \prod_i p(y_i | \boldsymbol{\theta}), \boldsymbol{\theta} = f(\mathbf{x}, \mathbf{b}) \Rightarrow Max \sum_i \ln p(y_i | f(\mathbf{x}, \mathbf{b}))$

substance and theory Slide 24 of 54

(Complex) Context-Conditionality: (Hallmark of Modern Soc-Sci Theory?)

Complex Context-Conditionality:

• Effect of (almost) anything depends on (almost) everything else, often complexly

Principal-Agent (Shared-Control) Situations, for example:

- Equilibrium PA/Bargaining Models some convex combination actors' ideals.
- If fully agent, y₁=f(X); if fully principal, y₂=g(Z); institutions: 0≤h(I)≤1 (eg, h(I):monitor+enforce cost)
- **RESULT**:

$$v = h(\mathbf{I})f(\mathbf{X}) + \left\{1 - h(\mathbf{I})\right\}g(\mathbf{Z})$$

• In words... $\Rightarrow \frac{\partial y}{\partial x} = h(\mathbf{I}) \frac{\partial f(\mathbf{X})}{\partial x}$;

$$\frac{\partial y}{\partial z} = -h(\mathbf{I}) \frac{\partial g(\mathbf{Z})}{\partial z}$$

 $\frac{\partial y}{\partial i} = \frac{\partial h(\mathbf{I})}{\partial i} \left[f(\mathbf{X}) - g(\mathbf{Z}) \right]$

...i.e., effect of anything depends on everything else!

2019 Asian Political Methodology Conference

• Start with CapMobility × ERpeg × CBindep:

$$\pi = \begin{cases} P \cdot E \cdot C \cdot \pi_1(\mathbf{X}_1) + P \cdot E \cdot (1 - C) \cdot \pi_2(\mathbf{X}_2) \\ + P \cdot (1 - E) \cdot C \cdot \pi_3(\mathbf{X}_3) + P \cdot (1 - E) \cdot (1 - C) \cdot \pi_4(\mathbf{X}_4) \\ (1 - P) \cdot E \cdot C \cdot \pi_5(\mathbf{X}_5) + (1 - P) \cdot E \cdot (1 - C) \cdot \pi_6(\mathbf{X}_6) \\ + (1 - P) \cdot (1 - E) \cdot C \cdot \pi_7(\mathbf{X}_7) + (1 - P) \cdot (1 - E) \cdot (1 - C) \cdot \pi_8(\mathbf{X}_8) \end{cases}$$

Central Bank & Government Interaction (Franzese AJPS '99):

 $E(\pi) = c \cdot \pi_c(\mathbf{x}_c) + (1 - c) \cdot \pi_g(\mathbf{x}_g)$

$$\pi_c = \overline{\pi}_c \qquad \qquad \pi_g(\mathbf{x}_g) = \pi_g(GP, UD, BC, TE, EY, FS, AW, \pi_a)$$

• Full Monetary Exposure & Atomistic \Rightarrow zero domestic autonomy $\Rightarrow \widehat{\pi_1(\mathbf{x}_1) = \pi_2(\mathbf{x}_2) = \pi_5(\mathbf{x}_5) = \pi_6(\mathbf{x}_6) = \pi_a}$

$$\Rightarrow E \cdot \pi_a + (1 - E) \cdot \begin{cases} P \cdot C \cdot \pi_3(\mathbf{x}_3) + P \cdot (1 - C) \cdot \pi_4(\mathbf{x}_4) \\ + (1 - P) \cdot C \cdot \overline{\pi}_c + (1 - P) \cdot (1 - C) \cdot \pi_g(\mathbf{x}_8) \end{cases}$$

• s.t. that, full e.r. fix \Rightarrow CB&Gov match peg \Rightarrow

$$\widehat{\pi_3(\mathbf{x}_3)} = \widehat{\pi_4(\mathbf{x}_4)} = \pi_p \Longrightarrow E \cdot \pi_a + (1 - E) \cdot \left\{ P \cdot \pi_p + (1 - P) \cdot \left[C \cdot \overline{\pi}_c + (1 - C) \cdot \pi_g(\mathbf{x}_8) \right] \right\}$$
2019 Asian Political Methodology Conference

 Compact & intuitive, yet gives all theoretically expected interactions, in the form expected

$$\pi = E \cdot \pi_a + (1 - E) \cdot \left\{ P \cdot \pi_p + (1 - P) \cdot \left[C \cdot \overline{\pi_c} + (1 - C) \cdot \pi_g(X_g) \right] \right\}$$

$$\begin{aligned} \frac{\partial \pi}{\partial E} &= \pi_a \Big(P^*, E^*, C^*, X^*, \pi_a^* \Big) - \Big\{ P \cdot \pi_p \Big(P^*, E^*, C^*, X^*, \pi_p^* \Big) + (1 - P) \cdot \Big[C \cdot \overline{\pi_c} + (1 - C) \cdot \pi_g(X_g) \Big] \Big\} \\ \frac{\partial \pi}{\partial P} &= (1 - E) \cdot \Big\{ \pi_p \Big(P^*, E^*, C^*, X^*, \pi_p^* \Big) - \Big[C \cdot \overline{\pi_c} + (1 - C) \cdot \pi_g(X_g) \Big] \Big\} \\ \frac{\partial \pi}{\partial C} &= (1 - E) \cdot \Big\{ (1 - P) \cdot \Big[\overline{\pi_c} - \pi_g(X_g) \Big] \Big\} \\ \frac{\partial \pi}{\partial X} &= (1 - E) \cdot \Big\{ (1 - P) \cdot \Big[(1 - C) \cdot \frac{\partial \pi_g}{\partial X} \Big] \Big\} \\ \frac{\partial \pi}{\partial X}^* &= E \cdot \frac{\partial \pi_a}{\partial X}^* + (1 - E) \cdot \Big\{ P \cdot \frac{\partial \pi_p}{\partial X}^* + (1 - P) \cdot \Big[(1 - C) \cdot \frac{\partial \pi_g}{\partial \pi_a} \cdot \frac{\partial \pi_a}{\partial X}^* \Big] \Big\} \end{aligned}$$

 Effectively Estimable, yet gives all theoretically expected interactions, in the form expected

$$E(\boldsymbol{\pi}) = \boldsymbol{B}_{\theta} + \boldsymbol{\beta}_{e} \boldsymbol{E} \cdot \boldsymbol{\beta}_{\pi^{*}} \boldsymbol{\pi}_{a} + (1 - \boldsymbol{\beta}_{e} \boldsymbol{E}) \cdot \begin{cases} \left[\left(\boldsymbol{\beta}_{gp} \boldsymbol{GP} + \boldsymbol{\beta}_{ey} \boldsymbol{EY} + \boldsymbol{\beta}_{up} \boldsymbol{UP} + \boldsymbol{\beta}_{bc} \boldsymbol{BC} + \boldsymbol{\beta}_{aw} \boldsymbol{AW} + \boldsymbol{\beta}_{fs} \boldsymbol{FS} + \boldsymbol{\beta}_{ie} \boldsymbol{TE} + \boldsymbol{\beta}_{a} \boldsymbol{\pi}_{a} \right) \right] \\ \cdot (1 - \boldsymbol{\beta}_{c1} \boldsymbol{C}) + \boldsymbol{\beta}_{c1} \boldsymbol{C} \cdot \boldsymbol{\beta}_{c2} \\ \cdot (1 - \boldsymbol{\beta}_{sp} \boldsymbol{SP} - \boldsymbol{\beta}_{mp} \boldsymbol{MP}) + \boldsymbol{\beta}_{sp} \boldsymbol{SP} \cdot \boldsymbol{\beta}_{\pi^{*}} \boldsymbol{\pi}_{sp} + \boldsymbol{\beta}_{mp} \boldsymbol{MP} \cdot \boldsymbol{\beta}_{\pi^{*}} \boldsymbol{\pi}_{mp} \end{cases}$$

- Just 14 parameters (plus intercepts & dynamics, assuming those constant), just 3 more than lin-add!
- Parameters substantive meaning, too:
 - Degree to which...constrains certain set of actors.
 - Yields est. of inflation-target hypothetical fully indep CB
 - ⇒ general strategy for estimating/measuring unobservables
 - If know role factor will play & explanators of factor well enough, can estimate unobservables conditional on both those theories, if both powerful enough & enough empirical variation.

2019 Asian Political Methodology Conference

Slide 28 of 54

Neat, but does it work? (Easy! stata: nl; R nls in dynlm.
 Estimated Equation, w/ Std. Errs.:

$$E(\pi) \approx \begin{pmatrix} .53^{.30} + .55^{.05} \pi_{t-1} - .12^{.04} \pi_{t-2} + .44^{.14} E \cdot \pi_a + \\ (1 - .44^{.14} E) \cdot \begin{cases} 1.0^{.05} SP \cdot .59^{.07} \pi_{sp} + .22^{.12} MP \cdot .59^{.07} \pi_{mp} + \\ (1 - 1.0^{.05} SP - .22^{.12} MP) \cdot \end{cases} \begin{bmatrix} 1.0^{.11} C \cdot (- .59^{1.2}) + \\ (1 - 1.0^{.11} C) \cdot (- .60^{.30} GP + 2.6^{1.3} EY + 16^{4.6} UP - 11^{2.4} BC) \\ + 1.2^{.49} AW - 1.1^{.30} FS - 8.2^{4.9} TE + .64^{.24} \pi_a \end{pmatrix} \end{bmatrix}$$

• Estimated Effects (highly context-conditional): $E\left(\frac{d\pi}{dC}\right) = (1-.44 \cdot E) \cdot \left\{ (1-b_p P) \cdot \left[(.6GP - 2.6EY - 16UP + 11BC - 1.2AW + 1.1FS + 8.2TE - .64\pi_a) - .59 \right] \right\}$

$$E\left(\frac{d\pi}{dx}\right) = (1 - .44E) \cdot \left\{ (1 - SP - .22MP) \cdot \left[(1 - C) \cdot b_x \right] \right\}$$

 $E\left(\frac{d\pi}{dP}\right) = (1 - .44E) \cdot b_p \cdot \left\{ .59\pi_p - \left[(1 - C) \cdot (-.6GP + 2.6EY + 16UP - 11BC + 1.2AW - 1.1FS - 8.2TE + .64\pi_a) - .59C \right] \right\}$

$$E\left(\frac{d\pi}{dE}\right) = .44 \cdot \left(\pi_a - \left\{b_p P \cdot .59\pi_p + (1 - b_p P) \cdot \left[(1 - C) \cdot (-.6GP + 2.6EY + 16UP - 11BC + 1.2AW - 1.1FS - 8.2TE + .64\pi_a) - .59C\right]\right\}\right)$$

Table 1 A	Alternative models	of inflation i	n 21 OECD	democracies,	1957-1990
-----------	--------------------	----------------	-----------	--------------	-----------

			1	inear-	interac	tive m	del (13	2)		
				ineur-	meruc	uve ma	<i>uei</i> (15	·/		
	Linear-	C = 1.	C = 1.	C = 1	C = 1.	C = 0.	C = 0	C = 0	C = 0	Theory-
Independent	additive	E = 1.	E = 1.	E = 0.	E = 0.	E = 1.	E = 1.	E = 0.	E = 0.	informed
variable	model (12)	P = 1	P = 0	P = 1	P = 0	P = 1	P = 0	P = 1	P = 0	model (14)
Intercent	+ 80				+5	03				± 53
intercept	(6.1)				(8)	40)				(30)
Lagged inflation	+.65				(0.	.51				+.55
(π, γ)	(.05)					6)				(05)
Twice-lagged	03					10				12
inflation (π_{t-2})	(.04)					4)				(.04)
Government partisanship	14	+.39	09	-3.37	-1.37	15	30	+1.82	- 39	60
$(GP \in \mathbf{X}_{a})$	(.08)	(.80)	(1.29)	(1.31)	(8.16)	(.47)	(.97)	(.74)	(4.68)	(.30)
Postelection year	+.59	+ 75	-2.06	+.50	- 88	-2.31	+6.03	+1.87	+3.81	+2.60
$(EY \in \mathbf{X}_n)$	(.30)	(.80)	(2.31)	(3.07)	(14.67)	(1.56)	(3.46)	(1.81)	(6.88)	(1.32)
Union power	+2.19	-16.59	+9.51	-3.82	-2.46	+33.95	+2.44	-11.88	-3.32	+16.2
$(UP \in \mathbf{X}_{n})$	(.74)	(6.43)	(17.42)	(13.91)	(59.24)	(7.64)	(15.92)	(13.56)	(37.49)	(4.61)
Coordination of	-1.36	+4.38	+11.27	+6.02	-39.11	-15.61	-11.69	+2.20	+9.27	-10.7
bargaining (BC $\in \mathbf{X}_{a}$)	(.41)	(3.50)	(5.33)	(4.91)	(30.32)	(3.97)	(9.79)	(3.86)	(23.64)	(2.35)
Aggregate	+.13	76	-2.37	+1.94	+13.70	56	66	-2.24	-3.43	+1.18
wealth (AW $\in \mathbf{X}_{a}$)	(.71)	(1.15)	(1.51)	(1.43)	(5.37)	(1.10)	(1.38)	(1.91)	(2.35)	(.49)
Financial-sector size	15	86	+2.00	+2.11	-11.13	+.55	-1.64	-1.00	+4.63	-1.09
$(FS \in X_n)$	(.10)	(.36)	(.96)	(.79)	(4.61)	(.36)	(1.26)	(.71)	(3.90)	(.30)
Trade exposure	04	+31.74	-50.21	-54.49	+50.81	-37.33	+104.56	+48.70	-120.5	-8.23
$(TE \in X_{q})$	(.99)	(14.33)	(25.31)	(39.85)	(176.99)	(14.87)	(30.40)	(33.74)	(103.79)	(4.92)
Inflation abroad	+.39	+.24	+.89	07	-4.01	+.89	+.18	+.98	+2.65	+.64
$(\pi_a \in \mathbf{X}_a)$	(.07)	(.14)	(.52)	(.59)	(3.94)	(.31)	(.78)	(.33)	(2.58)	(.24)
Global-financial	+.29	()	(<i>-</i>)	()		_	()	()	(,	+.44
exposure (E)	(.75)									(.14)
Single-currency	33					_				+1.04
(simple) peg (SP)	(.49)									(.05)
Multi-currency	37				_	_				+.22
(basket) peg (MP)	(.38)									(.12)
Peg or global inflation	_				_	_				+.59
$(\pi_{sn},\pi_{mn},\pi_{sn})$										(.07)
Central bank	-1.62				_	_				+1.03
independence (C)	(.68)									(.11)
Central bank					_	_				59
target ($\bar{\pi}_c$)										(1.18)
-										
Obs. (°Free)	660 (645)				660 ((593)				660 (643)
R^{2} (S.E.R.)	.72 (2.48)				.75 (2	2.31)				.76 (2.30)
D-W	1.91				2.0	03				1.96

Notes. Estimation by nonlinear least-squares, (14), or ordinary least-squares, (12) and (13), with Newey-West robust variance-covariance matrix. Standard errors in parentheses. Coefficients significant at p = .10 or better in bold; coefficients of implausible sign or magnitude in italic; and coefficients both significant and implausible in bold-italic. Independent variables labeled $x \in X_g$ are the political-economic conditions modeled in (14) as those to which domestic governments respond, which response central bank independence, global-financial exposure, and exchange rate and exchange rate

- Notice the nonlinear model respecting the combinatorial form implied by substance & theory captures the complex context-conditionality with just 2 parameters more than the linear-additive model.
- Notice the crazy coefficient estimates in the multicolinear nightmare linear-inter. model
- Notice the nonlinear model obtains 5.5% improvement adjusted R² over linear & even a 1.33% gain over the 50-parameter larger linearinteraction model.

461

Context-Conditional Inflation Effects of Political-Economic Factors

<u>Table 2</u>: Estimated Effects of Domestic Political-Economic Conditions, $d\pi/x$, as Function of Central Bank Autonomy, *CBA*, International Monetary Exposure, *E*, and Exchange-Rate Regime, *P*

		Little E:	xposed (E=	=0.40)	Moderately	Moderately Exposed ($E=0.65$)		Highly Exposed ($E=0.90$)		
		Float	Basket	Simple	Float	Basket	Simple	Float	Basket	Simple
		Floui	Peg	Peg	гюш	Peg	Peg	FIOUI	Peg	Peg
				Estimate	d Impact of a	a Post-Elec	ction Year ($(d\pi/dEY)$		
central	0.26	$+1.563^{.79}$	$+1.224^{.61}$	$+0.000^{.09}$	$+1.352^{.69}$	$+1.059^{.53}$	$+0.000^{.07}$	$+1.142^{.60}$	$+0.894^{.47}$	$+0.000^{.06}$
bank	0.46	$+1.120^{.57}$	$+0.877^{.44}$	$+0.000^{.06}$	$+0.970^{.50}$	$+0.759^{.39}$	$+0.000^{.05}$	$+0.819^{.44}$	$+0.641^{.34}$	$+0.000^{.05}$
auton.	0.66	$+0.678^{.37}$	$+0.531^{.29}$	$+0.000^{.04}$	$+0.587^{.32}$	$+0.459^{.25}$	$+0.000^{.03}$	$+0.495^{.28}$	$+0.388^{.22}$	$+0.000^{.03}$
			Estim	ated Impac	ct of 10% Inc	crease in U	nion Densi	itv (0.1·dπ/d	UP)	
central	0.26	$+0.98^{.25}$	$+0.76^{.18}$	$+0.00^{.05}$	$+0.84^{.21}$	$+0.66^{.16}$	$+0.00^{.04}$	$+0.71^{.19}$	$+0.56^{.14}$	$+0.00^{.04}$
bank	0.46	$+0.70^{.18}$	$+0.55^{.13}$	$+0.00^{.04}$	$+0.61^{.15}$	$+0.47^{.11}$	$+0.00^{.03}$	$+0.51^{.14}$	$+0.40^{.10}$	$+0.00^{.03}$
auton.	0.66	$+0.42^{.13}$	$+0.33^{.10}$	$+0.00^{.02}$	$+0.37^{.11}$	$+0.29^{.08}$	$+0.00^{.02}$	$+0.31^{.10}$	$+0.24^{.08}$	$+0.00^{.02}$
		Est	imated Imr	pact of 1%.	Increase in I	Financial-S	Sector Emp	lovment-Sha	re (dπ/dFS	5)
central	0.26	- 0.66 ^{.18}	-0.52.12	-0.00 ^{.03}	- 0.57 ^{.16}	-0.45.11	-0.00 ^{.03}	- 0.48 ^{.15}	- 0.38 ^{.11}	-0.00 ^{.03}
bank	0.46	- 0.47 ^{.13}	-0.37 ^{.09}	-0.00 ^{.02}	- 0.41 ^{.12}	-0.32 ^{.08}	-0.00 ^{.02}	- 0.35 ^{.11}	-0.27 ^{.08}	-0.00 ^{.02}
auton.	0.66	- 0.29 ^{.10}	-0.22 ^{.07}	-0.00 ^{.01}	-0.25.09	-0.19 ^{.06}	-0.00 ^{.01}	- 0.21 ^{.08}	- 0.16 ^{.06}	- 0.00 ^{.01}
			Estimate	ed Impact o	of 1% Increa	se in Averc	age Inflatio	n Abroad (d [.]	$\pi/d\pi_{a}$)	
central	0.26	$+0.49^{.14}$	$+0.41^{.13}$	$+0.11^{.05}$	$+0.50^{.12}$	$+0.43^{.11}$	$+0.17^{.07}$	$+0.52^{.10}$	$+0.46^{.10}$	$+0.24^{.09}$
bank	0.46	$+0.38^{.10}$	$+0.32^{.09}$	$+0.11^{.04}$	$+0.41^{.08}$	$+0.36^{.08}$	$+0.17^{.06}$	$+0.44^{.08}$	$+0.39^{.08}$	$+0.24^{.08}$
auton.	0.66	$+0.27^{.06}$	$+0.24^{.06}$	$+0.11^{.04}$	$+0.32^{.06}$	$+0.28^{.06}$	$+0.17^{.06}$	$+0.36^{.06}$	$+0.33^{.06}$	$+0.24^{.08}$

NOTES: These are *first-year effects*, meaning before the estimated dynamics unfold. Standard errors noted in superscripts.

2019 Asian Political Methodology Conference

Context-Conditional Partisan Inflation-Cycles

Figure 1: Estimated Partisan Cycles in the Linear & Theoretically Informed Models at High & Low CBA, E, & MP

Context-Conditional Inflation Effects of a Single-Currency Exchange-Rate Peg (to average currency)

Figure 2: Estimated Domestic-Inflation Effect of Actual or Counter-Factual SP in 21 Countries, 1957-90. Estimates plotted for dINF/dSP at the values of all other variables in the equation actually occurring in that country-year. For counter-factual pegs, peg country assumed to have OECD-average inflation that year. Shading separates countries and extends from 1955 to 1990 in each country, left to right.

Franzese (5 January 2019)

Context-Conditional Anti-Inflation Effects of Central Bank Independence

Figure 9: Estimated Immediate Domestic-Inflation Impact of 0.1 Increase in CBA in 21 Countries, 1957-90

2019 Asian Political Methodology Conference

Slide 34 of 54

Franzese (5 January 2019)

(Temporal) Dynamics also suffice to make causal-effect inference insufficient for causal-response estimation

• Another distinction worth elaborating:

o Identifying that a causal effect exists (causal inference)

VS

estimating a causal response (causal estimation).

- Experiments tend be ideal for the former; Not necessarily so great at the latter.
- The socio-politico-economic reality that we study is dynamic & interdependent. Approaches to empirical analysis that emphasize nonparametric causal-inference are static & insulated.

Temporal dynamics, for instance, mean a world like this...

$$\frac{dY_t}{dX_t} = \beta$$
 same as always

a) This is *literally* response of *y* <u>in period *t*</u> to a unit increase in *x* <u>in period *t*</u>. The model is dynamic, so there is more to the response than just this one-period effect.

b) Next period, t+1, y_t is larger (smaller) by $\beta \times \Delta x_t$ units, which means y_{t+1} will be larger (smaller) by $\rho \times \Delta y_t = \rho \times \beta \times \Delta x_t$, in addition to the $\beta \times \Delta x_t$ from this period, and...

Consider the many well-designed causal-inference studies of turnout effects of motor-voter laws & the like, for example. Typically small-to-modest effects found.

- Consider also the evidence that voting is a long-term acquired habit, the aggregate implication of which is that voter participation evolves dynamically like this.
- Response of voter participation isn't one snapshot-in-time scalar, it's a vector over time.
 2019 Asian Political Methodology Conference
 Slide 35 of 54
 Franzese (5 January 2019)

Context-Conditional Temporal Dynamics The Multiple Effects of Multiple Policymakers

- Theory:
 - The multiple effects operate through different aspects of policymaker fragmentation, polarization, & partisanship:
 - Veto-Actor Effects: raw number of parties (fragmentation) & ideological ranges (polarization)
 - Common-Pool Effects: effective numbers (fragmentation)
 - Delegation-Bargaining Effects: power-wtd mean ideologies (partisanship)
 - Different ways these distinct effects manifest in policy:
 - V-A (primarily) work to slow policy-adjustment (<u>delay stabilization</u>);
 - **C-P** induces over-draw from common resources (incl. from future as in debt); under-invest in common properties (*incumbents less electioneering*), log-proportionately
 - **D-B** induces convex-combinatorial (compromise) policies, incl. <u>greater left-activist/right-conservative</u> <u>Keynesian-countercyclical/conservative pro-cyclical</u>, in proportion to degree left/right controls pol.

• Empirical Model of this Theoretical Synthesis:

- Absolute number (frag.) VAs & their ideological range (polar.) modify policy-adjust rates
- <u>(log) Effective number</u> pol-mkrs & <u>s.d. of their ideology</u> (wtd measures) gauge extent of C-P problem in *electioneering* (+debt-lvl effect?)
- Some barg. process among partisan pol-mkrs (e.g., Nash ⇒ wtd-influence) determines combo reflected in net policy responsiveness to macro (^o K-activism)

$$\Rightarrow D_{it} = \alpha_i + (1 + \rho_n NoP_{it} + \rho_{ar} ARwiG_{it}) \times (\rho_1 D_{i,t-1} + \rho_2 D_{i,t-2} + \rho_3 D_{i,t-3})$$

$$+ (\beta_{\Delta Y} \Delta Y_{i,t} + \beta_{\Delta U} \Delta U_{i,t} + \beta_{\Delta P} \Delta P_{i,t}) \times (1 + \beta_{cg} CoG_{it})$$

$$+ (\gamma_{e1} E_{it} + \gamma_{e2} E_{i,t-1}) \times (1 + \gamma_{en} ENoP_{it} + \gamma_{sd} SDwiG_{it}) + \mathbf{x}'_{it} \mathbf{\eta} + \mathbf{z}'_{it} \mathbf{\omega} + \varepsilon_{it}$$

Franzese (5 January 2019)

2019 Asian Political Methodology Conference

Empirical Model Specification & Data

- $D_{it} = \alpha_i + \left(1 + \rho_n NoP_{it} + \rho_{ar} ARwiG_{it}\right) \times \left(\rho_1 D_{i,t-1} + \rho_2 D_{i,t-2} + \rho_3 D_{i,t-3}\right) + \mathbf{x}'_{it} \mathbf{\eta} + \mathbf{z}'_{it} \mathbf{\omega} + \varepsilon_{it}$
- $+ \left(\beta_{\Delta Y} \Delta Y_{i,t} + \beta_{\Delta U} \Delta U_{i,t} + \beta_{\Delta P} \Delta P_{i,t}\right) \times \left(1 + \beta_{cg} CoG_{it}\right) + \left(\gamma_{e1} E_{it} + \gamma_{e2} E_{i,t-1}\right) \times \left(1 + \gamma_{en} ENoP_{it} + \gamma_{sd} SDwiG_{it}\right)$
- $D_{it} = \text{Debt} (\% \text{GDP});$
- NoP & ARwiG = raw Num of Prtys in Govt & Abs Range w/i Govt:
 - VA conception, so modify dynamics. Expect $\rho_n \& \rho_{ar} > 0$.
 - By thry & for efficiency: modify all lag dynamics same.
- CoG (govt center, left to right, 0-10):
 - Modifies response to macroecon (equally, by thry & for eff'cy) : $\beta_{cq} < 0$.
 - Macroec: $\Delta Y = \text{real GDP growth}; \Delta U = \Delta \text{ unemp rate}; \Delta P = \text{infl rate}.$
- $\mathbf{x'\eta} = \text{controls: set pol-econ cond's response to which not partial$ differentiated or gov comm-pool: (e.g., E(real-int)-E(real-grow), ToT)
- ENoP & SDwiG = Effective Num of Prtys in govt & Std Dev w/i Govt:
 - Frag & Polar by *wtd-influence* concept. CP lvl-effects modify (at same rate) electioneering, E_t , pre-elect-yr, & E_{t-1} , post-elect-yr.: $\gamma_{en} \& \gamma_{sd} < 0$.
- $\mathbf{z}'\boldsymbol{\omega} = \text{set of constituent terms in the interactions:}$
 - *ENoP*, *SDwiG* <u>may</u> have positive coeff's by CP-effect on lvl debt, but issue is *temporal fract* > curr. govt *fract*. Thry o/w says omit.

• Pace Brambor et al. ('06), but joint-significance of multiple-policymaker conditioning effects (γ_{en} , γ_{sd} , ρ_n , ρ_{ar} , β_{cg}) overwhelmingly rejects excluding (p \approx .001), whereas joint-sig coeff's on constit. terms, **z**, clearly fails reject (p \approx .602) exclusion. (Almost) All theory says should be zero, so...

		Coeff.	Std. Err.	t-Stat.	$\Pr(T \ge t)$
Lagged	D _{t-1}	1.207	0.060	20.290	0.000
Dependent	D _{t-2}	-0.158	0.085	-1.851	0.065
Variables	D _{t-3}	-0.117	0.045	-2.577	0.010
$\mathbf{\rho_n}$ (veto-actor effect: fractionalization)		0.011	0.005	2.369	0.018
$\mathbf{\rho_{ar}}$ (veto-actor effect: polarization)		-0.002	0.004	-0.437	0.662
λ.(ΔY	-0.375	0.087	-4.332	0.000
Conditions	ΔU	1.095	0.286	3.829	0.000
	ΔP	-0.207	0.053	-3.889	0.000
$\boldsymbol{\beta_{cg}}$ (partisan-compromise bargaining)		-0.051	0.020	-2.484	0.013
	\mathbf{x}_1 (open)	16.128	5.314	3.035	0.002
	\mathbf{x}_2 (ToT)	0.414	1.728	0.239	0.811
Controls	$\mathbf{x}_3 \left(\textit{open} \cdot \textit{To} \textit{T} ight)$	-10.780	5.194	-2.076	0.038
	$\mathbf{x}_4 \; (dxrig)$	-0.038	0.066	-0.578	0.563
	$\mathbf{x}_5(oy)$	1.898	1.100	1.724	0.085
Pre- and Post-Electoral	Et	0.475	0.420	1.133	0.258
Indicators	E_{t-1}	1.146	0.562	2.040	0.042
γ_{en} (common-pool effect: fr	ractionalization)	-0.570	0.209	-2.727	0.007
γ_{sd} (common-pool effect:	polarization)	0.881	0.586	1.503	0.133
	Su	mmary Statistic	S		
N (Deg. Fr	ee)	735 (696)		s_e^2	2.522
$\mathbf{R}^{2}(\overline{\mathbf{R}}^{2})$		0.991 (0.990)		DW-Stat.	2.099

	Veto-A	ctor Effects: Es	timates of Polic	cy-Adjustment I	Rate	
Adjustment Rates	NoP=1	NoP=2	NoP=3	NoP=4	NoP=5	NoP=6
Lag Coefficient ^a	0.943	0.952	0.960	0.969	0.978	0.986
Policy-Adjust/Yr ^b	0.057	0.048	0.040	0.031	0.022	0.014
Long-Run Mult. ^c	17.498	20.639	25.154	32.200	44.727	73.208
¹ /2-Life ^d	11.778	13.956	17.087	21.971	30.654	50.397
90%-Life ^e	39.127	46.362	56.761	72.985	101.832	167.415
	Bargaining	Effects: Estima	tes of Keynesia	n Fiscal Respor	nsiveness	
	Mean Econ. Performance -2 std. dev.	Mean Econ. Performance -1 std. dev.	Mean Economic Performance	Mean Econ. Performance +1 std. dev.	Mean Econ. Performance +2 std. dev.	
Growth	-2.354	0.454	3.261	6.069	8.877	
d(UE)	1.915	1.034	0.153	-0.728	-1.608	
Infl	-3.593	1.230	6.054	10.877	15.701	
CoG	$E(D Econ)^{f}$	E(D Econ)	E(D Econ)	E(D Econ)	E(D Econ)	Fiscal-Cycle Magnitude
3.0	3.157	0.599	-1.959	-4.516	-7.074	10.231
4.2	2.930	0.556	-1.818	-4.192	-6.566	9.496
5.4	2.703	0.513	-1.677	-3.867	-6.058	8.761
6.6	2.476	0.470	-1.536	-3.543	-5.549	8.026
7.8	2.250	0.427	-1.396	-3.218	-5.041	7.291
9.0	2.023	0.384	-1.255	-2.894	-4.533	6.555
Collect	ive-Action/Con	nmon-Pool Effe	ects: Estimates	of Electoral Del	ot-Cycle Magnit	ude
	ENoP=1	ENoP=2	ENoP=3	ENoP=4	ENoP=5	
Electoral-Cycle Magnitude ^h	1.07410	0.86454	0.65497	0.44541	0.23585	

Some Dynamic Effect Estimates

(From a Different, but Similar Political Economy of Public Debt Project)

<u>Figure 4</u>: Estimated Immediate and Longer-term T&T Response to Increases in Income Skew as a Function 2019 Asian Political Methodolog Evoter Participation and to Increases in Vater Barticipation as a Function of Income Skew

Return to those 'dynamic' estimates of left-govt interest-costs: those were just static snapshots; being 'nonparametric', offer no clue to t+13 etc, & also susceptible to small-sample peculiarities in monthly events.

Franzese (5 January 2019)

Spatial (Cross-Unit) Interdependence imply Spatial Dynamics, and are a form of Simultaneity ($y_1 \Leftrightarrow y_2$), & so also suffice to make causaleffect inference insufficient for causal-response estimation

Systems with cross-unit interdependence (contagion), or with simultaneous causality, y⇔x, like more or less all of social science, mean a world like this:

$$y = \alpha_0 + \alpha_1 (\beta_0 + \beta_1 y + \beta_2 z_x + \varepsilon_x) + \alpha_2 z_y + \varepsilon_y$$

$$y = \alpha_{0} + \alpha_{1}x + \alpha_{2}z_{y} + \varepsilon_{y}$$

$$x = \beta_{0} + \beta_{1}y + \beta_{2}z_{x} + \varepsilon_{x}$$
, which imply:

$$y - \alpha_{1}\beta_{1}y = \alpha_{0} + \alpha_{1}\underbrace{\left(\beta_{0} + \beta_{2}z_{x} + \varepsilon_{x}\right)}_{\text{exogenous part of }x} + \alpha_{2}z_{y} + \varepsilon_{y}$$

$$y - \alpha_{1}\beta_{1}y = \alpha_{0} + \alpha_{1}\underbrace{\left(\beta_{0} + \beta_{2}z_{x} + \varepsilon_{x}\right)}_{\text{exogenous part of }x} + \alpha_{2}z_{y} + \varepsilon_{y}$$

$$y = (1 - \alpha_{1}\beta_{1})^{-1}\left[\alpha_{0} + \alpha_{1}\left(\beta_{0} + \beta_{2}z_{x} + \varepsilon_{x}\right) + \alpha_{2}z_{y} + \varepsilon_{y}\right]$$
, meaning: and not

$$y = (1 - \alpha_{1}\beta_{1})^{-1}\left[\alpha_{0} + \alpha_{1}\left(\beta_{0} + \beta_{2}z_{x} + \varepsilon_{x}\right) + \alpha_{2}z_{y} + \varepsilon_{y}\right]$$

Experiments work to identify *existence* of causal effects by preventing *estimation* of *responses* in the actual simultaneous system of interest. They estimate causal parameters, not causal effects.

- The experimentally or quasi-experimentally derived estimates of causal 'effects' of X in cases where X⇔Y in the context we care about (i.e., not in the lab) will be of the impulses, i.e. of the parameters, β, and not of the response, the *effect*, dY/dX.
- In quasi-experimental contexts, may very well be biased estimates of β as well, simultaneity, including spatial-simultaneity, being sources of "interference" so Control likely contaminated.

Given Ubiquitous Endogeneity of Social Phenomena, Must Estimate Systems Models

• This discussion regards causal-parameter estimation (which is what exper. or well-designed non-parametric causal-inference strategy will uncover also,

 $\frac{\partial y}{\partial x}$ and not $\frac{d y}{d x}$).

Notice, btw, that can say quite a bit about the simultaneity bias in this case. Simply not true that it's a unique advantage of design-based strategies that can bound these sorts of biases (or ones from other confounds)

c) Mutual Causality, $y \Leftrightarrow x$, & so single-equation model is incomplete (violating Assumpt 1), implying Covariance Regressor w/ Residual (violating Assumpt 4):

$$= \beta x + \gamma z + \varepsilon_{y} \\ = \beta x + \gamma z + \varepsilon_{y} \\ = \theta y + \lambda w + \varepsilon_{x} \end{cases} \Rightarrow \begin{cases} Cov(x, \varepsilon_{y}) = Cov(\varepsilon_{y}, \theta y + \lambda w + \varepsilon_{x}) = Cov(\varepsilon_{y}, \theta \varepsilon_{y}) = Ov(\varepsilon_{y}, \theta \varepsilon_{y}) \\ = Cov(\varepsilon_{y}, \theta(\beta x + \gamma z + \varepsilon_{y})) = Cov(\varepsilon_{y}, \beta \varepsilon_{y}) = \theta Var(\varepsilon_{y}) \\ Cov(y, \varepsilon_{x}) = Cov(\varepsilon_{x}, \beta x + \gamma z + \varepsilon_{y}) = Cov(\varepsilon_{x}, \beta x) \\ = Cov(\varepsilon_{x}, \beta \varepsilon_{x}) = \beta Var(\varepsilon_{y}) \end{cases}$$

$$y = \beta x + \gamma z + \varepsilon_{y} , \text{ but we estimate instead just } y = bx + gz + \varepsilon_{y} : \\ x = \theta y + \lambda w + \varepsilon_{x} \end{cases}$$

$$\Rightarrow \begin{bmatrix} b \\ g \end{bmatrix} = \left\{ [x \ z]' [x \ z] \right\}^{-1} [x \ z]' [\beta x + \gamma z] + \left\{ [x \ z]' [x \ z] \right\}^{-1} [x \ z]' \varepsilon_{y} = \left\{ [x \ z]' [x \ z] \right\}^{-1} [x \ z]' [\beta x + \gamma z] + \left[[x \ z]' [x \ z] \right]^{-1} [x \ z]' \varepsilon_{y} = \left\{ \begin{bmatrix} \beta \\ \gamma \end{bmatrix} + \left\{ [x \ z]' [x \ z] \right\}^{-1} \begin{bmatrix} x' \varepsilon_{y} \\ z' \varepsilon_{y} \\ z' \varepsilon_{y} \end{bmatrix} = \begin{bmatrix} \beta \\ \gamma \end{bmatrix} + \left\{ [x \ z]' [x \ z] \right\}^{-1} \begin{bmatrix} C(x, \varepsilon_{y}) \times V(z) \\ -C(x, \varepsilon_{y}) \times C(z, x) \end{bmatrix} = \begin{bmatrix} \beta \\ \gamma \end{bmatrix} + \left\{ \frac{\theta \sigma_{\varepsilon_{y}}^{2} \times V(z)}{-\theta \sigma_{\varepsilon_{y}}^{2} \times C(z, x)} \end{bmatrix}$$

Simultaneity bias generally has sign of & is proportionate in magnitude to omitted causal arrow, &, as usual in multiple regression, it induces biases in other regressors, generally of smaller magnitude (b/c Var gen'ly > |Cov|), in opposite direction (same direction if Cov<0), and magnitudes of induced biases distributed across regressors in proportion to their correlation w/ endogenous regressor (OVB intuition).

2019 Asian Political Methodology Conference

Slide 42 of 54 Franzese (5 January 2019)

Given Ubiquitous Endogeneity of Social Phenomena, Must Estimate Systems Models

- E. Generalize for (linear) system of *M* equations with *K* regressors:
 - 1.Recall that for one observation on this system, we could write:

2. Normalizing γ_{mm} coeff's on y_m (diagonals of Γ) to 1 in above (so explain $1 \times y$ rather some other $1 \times y$) makes these diagonals γ_{mm} of Γ below = 0:

$$\underbrace{\mathbf{Y}}_{N \times M} = \underbrace{\mathbf{Y}}_{N \times M} \underbrace{\mathbf{\Gamma}}_{M \times M} + \underbrace{\mathbf{X}}_{N \times K} \underbrace{\mathbf{B}}_{K \times M} + \underbrace{\mathbf{E}}_{N \times M}$$
$$\Rightarrow \mathbf{Y} - \mathbf{Y}\mathbf{\Gamma} = \mathbf{Y}(\mathbf{I} - \mathbf{\Gamma}) = \mathbf{X}\mathbf{B} + \mathbf{E}$$
$$\Rightarrow \mathbf{Y} = (\mathbf{X}\mathbf{B} + \mathbf{E})(\mathbf{I} - \mathbf{\Gamma})^{-1}$$

- Y here is matrix of endogenous variables data, which were y & x in previous slide; X here is another set of exogenous variables Z, z & w in prev. (sorry).
- An exogenous shock to X from before can only be expressed in ε_x , but once it is, we see its effect, i.e. the full causal response, is given by $(I-\Gamma)^{-1} \times d\varepsilon \times B$.

2019 Asian Political Methodology Conference

Simulation Demonstration of Inadequacy of Causal Inference to Causal Estimation

SIMULTANEITY BIAS, 2x2 case:

TRUTH	$y = .5x + z + \varepsilon_y$
110111.	$x = .5y + w + \varepsilon_x$

```
drop x y z
gen err_y=rnormal()
gen err_x=rnormal()
gen z=rnormal()
```

```
gen w=rnormal()
```

 $\begin{array}{l} \text{TRUTH:} \quad \begin{array}{l} y = .5x + z + \mathcal{E}_y \\ x = .5y + w + \mathcal{E}_x \end{array} \Rightarrow \begin{array}{l} y = .5(.5y + w + \mathcal{E}_x) + z + \mathcal{E}_y = (1 - .25)^{-1} \begin{bmatrix} .5(w + \mathcal{E}_x) + z + \mathcal{E}_y \end{bmatrix} \\ x = .5(.5x + z + \mathcal{E}_y) + w + \mathcal{E}_x = (1 - .25)^{-1} \begin{bmatrix} .5(z + \mathcal{E}_y) + w + \mathcal{E}_x \end{bmatrix} \\ \begin{array}{l} \text{gen } y = (1/(1 - .25)) * (.5^* \text{w} + .5^* \text{err}_x + z + \text{err}_y) \\ \text{gen } x = (1/(1 - .25)) * (.5^* z + .5^* \text{err}_y + w + \text{err}_x) \\ \text{reg } y \times z \\ \text{reg } x \times y \end{array}$

• In this case, for example, $\frac{\partial y}{\partial x} = .5$, but $\frac{dy}{dx} = .67$ (i.e., causal-parameter estimation fails to give the causal effect, understood causal response of Y, dY, to dX).

Of course, social phenomena are dynamic systems of endogenous equations, so... Vector Autoregression should get attention as potentially "useful empirical simplification" also:

• In the simple two-variable case, the *structural version* of the *first-order* VAR model is

 $y_{t} = b_{10} - b_{12}z_{t} + \gamma_{11}y_{t-1} + \gamma_{12}z_{t-1} + \varepsilon_{yt}$ $z_{t} = b_{20} - b_{21}y_{t} + \gamma_{21}y_{t-1} + \gamma_{22}z_{t-1} + \varepsilon_{zt}$

where y_t and z_t are assumed stationary and ε_{yt} and ε_{zt} , the structural disturbances, are uncorrelated white-noise disturbances with standard deviations σ_y and σ_z respectively.

• Note that we can rewrite this system as

And these examples of (1) Banking, Debt, & Currency Crises, and (2) Public Transfers, Total Expenditures, & Revenues may also illustrate how plausible external validity but questionable internal validity still interesting & useful btw...

Franzese, Macroeconomic Policies 2002)

Interpreting Spatiotemporal (=Dynamic Interdependent) Effects

- The Model: $\mathbf{y}_t = \rho \mathbf{W}_n \mathbf{y}_t + \phi \mathbf{I}_n \mathbf{y}_{t-1} + \mathbf{X}_t \mathbf{\beta} + \mathbf{\varepsilon}_t$
 - Convenient, for interpretation, to write model this way too:

$$\mathbf{y}_{t} = \rho \mathbf{W}_{n} \mathbf{y}_{t} + \phi \mathbf{y}_{t-1} + \mathbf{X}_{t} \boldsymbol{\beta} + \boldsymbol{\varepsilon}_{t}$$

- Coefficients, β_x are the pre-spatial, pre-temporal—and wholly unobservable!—impulse from some x to y.
- Spatiotemporal *Effects*:
 - Post-spatial, pre-temporal "instantaneous effect" of dx:

$$d\left\{\left[\mathbf{I}_{N}-\rho\mathbf{W}_{N}\right]^{-1}\left(\mathbf{X}_{t}\boldsymbol{\beta}+\boldsymbol{\varepsilon}_{t}\right)\right\}/dx_{i} \text{ for some (set of) } i; \text{ i.e., } \left[\mathbf{I}_{N}-\rho\mathbf{W}_{N}\right]^{-1}d\mathbf{x}_{k}^{i}\boldsymbol{\beta}$$

• Spatiotemp Response Paths, use this:

$$\mathbf{y}_{t} = \left[\mathbf{I}_{N} - \rho \mathbf{W}_{N}\right]^{-1} \left\{ \phi \mathbf{y}_{t-1} + \mathbf{X}_{t} \boldsymbol{\beta} + \boldsymbol{\varepsilon}_{t} \right\}$$

• LR Multiplier & LR-SS, use this:

$$\mathbf{y}_{t} = \rho \mathbf{W}_{N} \mathbf{y}_{t} + \phi \mathbf{y}_{t} + \mathbf{X}_{t} \boldsymbol{\beta} + \boldsymbol{\varepsilon}_{t} = (\rho \mathbf{W}_{N} + \phi \mathbf{I}_{N}) \mathbf{y}_{t} + \mathbf{X}_{t} \boldsymbol{\beta} + \boldsymbol{\varepsilon}_{t}$$

$$= \left[\mathbf{I}_{N} - \rho \mathbf{W}_{N} - \phi \mathbf{I}_{N}\right]^{-1} \left(\mathbf{X}_{t} \boldsymbol{\beta} + \boldsymbol{\varepsilon}_{t}\right)$$

2019 Asian Political Methodology Conference

Maps of Response-Estimates (F&H EUP)

Figure 1. Short-run Spatial Effects of a Positive Oneunit Shock to German LMT Expenditures Shock to Germany -0.549 -0.449 -0.349 348 - -0.249 0 248 - -0 220 0.219 - -0.149 -0.148 - -0.049 -0.048 - 0.015 0.016 - 0.049 0.050 - 0.149

Figure 2. Steady-state Spatial Effects of a Positive Oneunit Shock to German LMT Expenditures

Actually, can demonstrate that some manifestations of Spatiotemporal Interdependence make even NHR-Based Causal-Inference (well, specifically: Matching) Problematic

DGP: $\mathbf{y} = \rho \mathbf{W} \mathbf{y} + \mathbf{x} + \mathbf{T} + \boldsymbol{\varepsilon}$ where $w_{ij}^* = -3 - a_1 |x_i - x_j| + v_{ij}$,

 $w_{ij} = 1,0 \text{ if } w_{it}^* > 0, \le 0, \text{ with } x \sim N(0,1), v \sim Logistic (0,1),$

 $T_i = a_2 x_i + u_{ij}$, with $u \sim Logistic$ (0,1), and $\varepsilon \sim N(0,1)$.

- Experimental Cases:
 - 1 Exogenous Network ($a_1=0$), Orthogonal Treatment ($a_2=0$), No Spillover ($\rho=0$).
 - 2 Exogenous Network ($a_1=0$), Orthogonal Treatment ($a_2=0$), Spillovers ($\rho=.5$).
 - 3 Endogenous Network ($a_1=1$), Orthogonal Treatment ($a_2=0$), No Spillover ($\rho=0$).
 - 4 Endogenous Network ($a_1=1$), Orthogonal Treatment ($a_2=0$), Spillovers ($\rho=.5$).
 - 5 Exogenous Network ($a_1=0$), Treatment Not Orthogonal ($a_2=1$), No Spillover ($\rho=0$).
 - 6 Exogenous Network ($a_1=0$), Treatment Not Orthogonal ($a_2=1$), Spillovers ($\rho=.5$).
 - 7 Endogenous Network (a₁=1), Treatment Not Orthogonal (a₂=1), No Spillover (ρ=0).
 - 8 Endogenous Network ($a_1=1$), Treatment Not Orthogonal ($a_2=1$), Spillovers ($\rho=.5$).
- Estimators:
 - Naïve Regression: Y on X and T, OLS.
 - Matching: Nearest Neighbor using propensity scores by logit: $T_i = \alpha + a_2 x_i + u_{ii}$
 - Spatial Autoregression: Y on X, WY, and T, by spatial-ML.
 - Spatially Lagged Treatment: Y on X, T, and WT, OLS.

2019 Asian Political Methodology Conference

Some Quick MC's to Illustrate Some Challenges and Estimation-Strategy Effectiveness

Case 1: Exogenous Network, Orthogonal Treatment, No Outcome Contagion							
	Naïve	Matching	Outcome	Treatment			
	Regression	Watering	Contagion	Diffusion			
$Coeff(\beta = 1)$	1.003	1.033	0.999	1.003			
Std	0.201	0.272	0.201	0.201			
RMSE	ISE 0.201 0.2		0.201	0.201			
$Coeff(\rho = 0)$			-0.035	0.017			
Std			0.189	0.375			
RMSE			0.192	0.376			

Case 2: Exogenous Network, Orthogonal Treatment, with Outcome Contagion						
	Naïve	Matching	Outcome	Treatment		
	Regression	Watering	Contagion	Diffusion		
$\operatorname{Coeff}(\beta=1)$	1.05	1.019	0.999	1.014		
Std	0.213	0.279	0.204	0.208		
RMSE	0.219	0.279	0.204	0.209		
$Coeff(\rho = .5)$			0.428	0.411		
Std			0.171	0.478		
RMSE			0.186	0.486		

Case 3: Endogenous Network, Orthogonal Treatment, No Outcome Contagion							
	Naïve	Matahing	Outcome	Treatment			
	Regression	Matching	Contagion	Diffusion			
$Coeff(\beta = 1)$	1.015	1.031	1.015	1.013			
Std	0.218	0.293	0.219	0.219			
RMSE	ISE 0.219		0.219	0.22			
$Coeff(\rho = 0)$			-0.038	-0.029			
Std			0.18	0.432			
RMSE			0.184	0.433			

Case 4: Endogenous Network, Orthogonal Treatment, with Outcome Contagion					
	Naïve	Matching	Outcome	Treatment	
	Regression	Matching	Contagion	Diffusion	
$Coeff(\beta = 1)$	0.943	0.944	0.994	1.04	
Std	0.203	0.252	0.21	0.251	
RMSE	0.21	0.258	0.21	0.254	
$Coeff(\rho = .5)$			0.429	0.145	
Std			0.182	0.582	
RMSEAsian Po	litical Methodology	Conference	0.195	0.682 Slie	

Case 5: Exogenous Network, Treatment Non-Orthogonal, No Outcome Contagion				
	Naïve	Matahing	Outcome	Treatment
	Regression	Matching	Contagion	Diffusion
$Coeff(\beta = 1)$	0.994	0.964	0.99	0.994
Std	0.2	0.258	0.2	0.2
RMSE	0.2	0.26	0.2	0.2
$\operatorname{Coeff}(\rho = 0)$			-0.024	0.007
Std			0.138	0.303
RMSE			0.14	0.303

|--|

	Naïve Regression	Matching	Outcome Contagion	Treatment Diffusion
$Coeff(\beta = 1)$	1.026	1.055	1.007	1.018
Std	0.22	0.273	0.205	0.217
RMSE	0.221	0.279	0.205	0.217
$Coeff(\rho = .5)$			0.453	0.359
Std			0.125	0.348
RMSE			0.134	0.376

Case 7: Endogenous Network, Treatment Non-Orthogonal, No Outcome Contagion

<u>v</u>			<u> </u>	
	Naïve Regression	Matching	Outcome Contagion	Treatment Diffusion
$Coeff(\beta = 1)$	1.005	1.031	1.003	1.004
Std	0.214	0.296	0.213	0.214
RMSE	0.214	0.297	0.213	0.214
$\operatorname{Coeff}(\rho = 0)$			-0.025	-0.005
Std			0.135	0.281
RMSE			0.137	0.281

Case 8: Endogenous Network, Treatment Non-Orthogonal, with Outcome Contagion

0			0 /	0
	Naïve Regression	Matching	Outcome Contagion	Treatment Diffusion
$\text{Coeff}(\beta = 1)$	1.25	1.542	1.021	1.197
Std	0.244	0.405	0.229	0.234
RMSE	0.349	0.677	0.23	0.306
$\operatorname{Coeff}(\rho = .5)$			0.465	-0.03
Std			0.105	0.362
49 of 54 RMSE			Franzese ¹ (5 Janu	ary 2019641

Contagion, Network Selection, & Especially Coevolution Pose Large Problems for Nonparametric Causal-Inference

Some highlights of results

- Combination of network selection & network contagion by far the most problematic for all the incorrect estimation strategies.
 - Worst of all if furthermore treatments non-orthogonal (i.e., not perfectly experimental), but even if random-control assigned, "indirect effects" esp. poorly estimated.
- Propensity-score matching (perhaps surprisingly) dominated by simple regression; quite appreciably so in worst cases (selection & contagion).
- In these relatively clean conditions, the problems for matching or treatmentspillover models show mainly as inefficiency (as expected), and much worse for the "indirect" than the "direct" effects.
 - In worst case, treatment-effect estimate bias is +20% & indirect effects horribly estimated.
- Correctly specified estimation model with appropriate estimator dominates, of course, dramatically so when selection & contagion, & even more dramatically when treatment non-orthogonal (i.e., outside experimental contexts)

• And/but this is all taking the ATE/Causal-Parameter (not dy/dx) as estimand:

 If instead causal-*response* is estimand, then even when less-structural estimation strategy gets the parameter right, it's horribly mistaken about response (because no feedback & can't be). In fact, estimate not even in the right dimensionality!

The Curse of Dimensionality & the Logical Impossibility of Truly *Nonparametric* or *Model-Free* Inference

. Consider, e.g., a system of M endogenous equations like this:

1. In matrix notation, system written compactly as:

$$\mathbf{y}'_{i} \prod_{M \times M} + \mathbf{x}'_{i} \mathbf{B}_{K \times M} = \mathbf{\varepsilon}_{i}$$

- 2. Even just $V(\varepsilon) \equiv \Sigma$ has $\frac{1}{2}M^2 + \frac{1}{2}M > M$ things to learn, in general, from each M things observed in each context *i*... (& assuming that VCov fixed over *i*).
- 3. Causal estimation & inference from any sort of data, observational or experimental, requires that this number of parameters (things to learn) per observation be reduced to less than 1 (i.e., parameters/observations<1).
- Point simply that, being fully non-parametric, the number things to estimate grows at least exponentially in the number of observations: generally impossible w/o model to reduce parameterization.
- So, <u>models</u>: I want them; in fact, point of exercise is to estimate them: Useful Empirical Simplifications. To infer out of sample (& often beyond support as well); simply cannot without model. But, even if you don't like models, you cannot infer much (anything?) w/o one. & not so sure simpler model necessarily implies less-restrictive model... I'd rather try theory & substance first & appeal to simplicity second \Rightarrow EMTI Slide 51 of 54

To FE or Not To FE: The Not-So-Harmless DLMFE estimator / estimation strategy 4. Part of how FE manifests is tendency to pick up too much heterogeneity and call it unit-fixed &, in LSDV case, part systematic. a) I.e., the *sweep* sweeps both fixed & stochastic unit-specific effects. b)I.e., classic overfitting = another way see incidental-param problem c) Troeger's MC's illustrate problem: note severe overdispersion of estimated relative to actual unit-specific effects:

2019 Asian Political Methodology Conference

To FE or Not To FE: The Not-So-Harmless DLMFE estimator / estimation strategy

d)Can be even worse. Will even find fixed-effects where they ain't:

Settings: no FE in DGP, 1 RHS variable, SD(within)=SD(between)=1 Settings: no FE in DGP, 3 RHS variables, SD(within)=SD(between)=1

Notice: in both this & previous case, the unit-effects not obviously biased (I think may/should be a small-sample inflation bias in the FE's and a corresponding small-sample attenuation bias in the **b**'s), but at least highly inefficient. Even if this latter is the case, in limited (in *T*) samples, these "*mere* inefficiency" issues can be *severe*.

The view that FE at worst merely inefficient & RE biased "insufficiently nuanced". Seems to me FE-based strategies like D-in-D should inherit these shortcomings.

2019 Asian Political Methodology Conference

Slide 53 of 54

Franzese (5 January 2019)

problems w/ model &/or estimation strategy also, e.g. dynamic misspecification, this overfitting will furthermore induce biases in other parameter estimates that can easily make FE the worst option of the family of panel/TSCS models. Worse even than just the rampant Type II error that often attendant **DLMFE**

Then, if other

An Unfortunate Syllogism for the Current Orthodoxy as Applied to Social Science...

• The Four (no Five, no Six) Fundamental Problems of Empirical Analysis in Social Science: [An empirical comparativist's manifesto: Context Matters –]

- **<u>1. Multicausality</u>**: just about everything matters.
- <u>2. Heterogeneity & Context-Conditionality</u>: the way just about everything matters depends on just about everything else.
- <u>3. Temporal, Spatial, Spatiotemporal Dynamics</u>: just about everything is dynamic, not static.
- **<u>4. Ubiquitous Endogeneity</u>**: just about everything causes j.a. everything else.
 - [0. <u>Micronumerosity</u> (Goldberger): We have precious little data/useful variation with which to sort it all out.]
 - [-1. & the truth is probably moving on us (but that's just unobserved #2 again)]
- [I.e., a conjecture: if Social, Political, &/or Economic, then not SUTVA.]

No (limited, very limited) way forward to <u>CAUSAL ESTIMATION</u> without imposing structure, i.e. models, ideally as theoretical & substantively motivated/specified as possible, & estimate as close as possible in actual contexts to which wish to infer...but that's fine with me. I like models. I think they're very much of the point of the empirical exercise...to obtain <u>USEFUL EMPIRICAL SIMPLIFICATIONS</u>.