Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-24T09:58:16.269Z Has data issue: false hasContentIssue false

Hermite Type Spline Spaces over Rectangular Meshes with Complex Topological Structures

Published online by Cambridge University Press:  07 February 2017

Meng Wu*
Affiliation:
Galaad2, Inria, Sophia Antipolis, France School of Mathematics, Hefei University of Technology, Hefei, Anhui 230000, P.R. China
Bernard Mourrain*
Affiliation:
Galaad2, Inria, Sophia Antipolis, France
André Galligo*
Affiliation:
Laboratoire J. A. Dieudonné, University of Nice, Nice, France
Boniface Nkonga*
Affiliation:
Laboratoire J. A. Dieudonné, University of Nice, Nice, France
*
*Corresponding author. Email addresses: meng.wu@hfut.edu.cn, wumeng@mail.ustc.edu.cn (M. Wu), Bernard.Mourrain@inria.fr (B. Mourrain), Andre.Galligo@unice.fr (A. Galligo), boniface.nkonga@unice.fr (B. Nkonga)
*Corresponding author. Email addresses: meng.wu@hfut.edu.cn, wumeng@mail.ustc.edu.cn (M. Wu), Bernard.Mourrain@inria.fr (B. Mourrain), Andre.Galligo@unice.fr (A. Galligo), boniface.nkonga@unice.fr (B. Nkonga)
*Corresponding author. Email addresses: meng.wu@hfut.edu.cn, wumeng@mail.ustc.edu.cn (M. Wu), Bernard.Mourrain@inria.fr (B. Mourrain), Andre.Galligo@unice.fr (A. Galligo), boniface.nkonga@unice.fr (B. Nkonga)
*Corresponding author. Email addresses: meng.wu@hfut.edu.cn, wumeng@mail.ustc.edu.cn (M. Wu), Bernard.Mourrain@inria.fr (B. Mourrain), Andre.Galligo@unice.fr (A. Galligo), boniface.nkonga@unice.fr (B. Nkonga)
Get access

Abstract

Motivated by the magneto hydrodynamic (MHD) simulation for Tokamaks with Isogeometric analysis, we present splines defined over a rectangular mesh with a complex topological structure, i.e., with extraordinary vertices. These splines are piecewise polynomial functions of bi-degree (d,d) and parameter continuity. And we compute their dimension and exhibit basis functions called Hermite bases for bicubic spline spaces. We investigate their potential applications for solving partial differential equations (PDEs) over a physical domain in the framework of Isogeometric analysis. For instance, we analyze the property of approximation of these spline spaces for the L 2-norm; we show that the optimal approximation order and numerical convergence rates are reached by setting a proper parameterization, although the fact that the basis functions are singular at extraordinary vertices.

MSC classification

Type
Research Article
Copyright
Copyright © Global-Science Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Czarny, O. and Huysmans, G.. Bézier surfaces and finite elements for MHD simulations. Journal of Computational Physics, vol. 227, p. 74237445, 2008.CrossRefGoogle Scholar
[2] Huysmans, G. T. A., Goedbloed, J. P.. “Isoparametric Bicubic Hermite Elements for Solution of the Grad-Shafranov Equation”. International Journal of Modern Physics C, p. 371376, 1991.CrossRefGoogle Scholar
[3] Huebner, K. H., Thornton, E. A.. The Finite ElementMethod for Engineers. John Wiley & Sons, ISBN 0-471-09159-6, 1982.Google Scholar
[4] Höig, K.. Finite Element Methods with B-Splines. SIAM, 2003.Google Scholar
[5] Forsey, D. R. and Bartels, R. H.. Hierarchical B-spline refinement. In Proceedings of the 15th annual conference on Computer graphics and interactive techniques, SIGGRAPH ’88, pages 205212, New York, NY, USA, 1988. ACM.CrossRefGoogle Scholar
[6] Kraft, R., Adaptive and linearly independent multilevel B-splines. In Surface Fitting and Multiresolution Methods, Méhauté, A. L., Rabut, C., and Schumaker, L. L., Eds., vol. 2. Vanderbilt University Press, p. 209216.Google Scholar
[7] Giannelli, C., Jüttler, B., and Speleers, H.. THB-splines: The truncated basis for hierarchical splines. Computer Aided Geometric Design, 29(7):485498, 2012.CrossRefGoogle Scholar
[8] Dokken, T., Lyche, T., and Pettersen, K.. Polynomial splines over locally refined box-partitions. Computer Aided Geometric Design, 30(3), p. 331356, 2013.CrossRefGoogle Scholar
[9] Sederberg, T. W., Zheng, J., Bakenov, A., Nasri, A.. T-splines and T-NURCCs. ACM Trans. Graph., vol. 22, p. 161172, 2003.CrossRefGoogle Scholar
[10] Ergatoudis, I., Irons, B., and Zienkiewicz, O.. Curved isoparametric “quadrilateral” elements for finite element analysis. Int. J. Solids Structures, vol. 4, p. 3142, 1968.CrossRefGoogle Scholar
[11] Hughes, T. J. R., Cottrell, J. A. and Bazilevs, Y.Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement”. Computer Methods in Applied Mechanics and Engineering, vol. 194, Issues. 39-41, p. 41354195, 2005.CrossRefGoogle Scholar
[12] Gu, X., He, Y., Qin, H., Manifold splines. Graphical Models, vol. 68, p. 237254, 2006.CrossRefGoogle Scholar
[13] He, Y., Wang, K., Wang, H., Gu, X., Qin, H., Manifold T-spline. Geometric Modeling and Processing-GMP 2006, Lecture Notes in Computer Science, vol. 4077, p. 409422, 2006.CrossRefGoogle Scholar
[14] Wang, H., He, Y., Li, X., Gu, X., Qin, H., Polycube Splines. Computer-Aided Design, vol. 40, p. 721733, 2008.CrossRefGoogle Scholar
[15] Ying, L., Zorin, D., A simple manifold-based construction of surfaces of arbitrary smoothness. ACM Trans. Graph., vol. 23, p. 271275, 2004.CrossRefGoogle Scholar
[16] Peter, J., Reif, U., Subdivision Surfaces. Geometry and Computing, Springer-Verlag, ISBN 878-3-540-76406-9, 2008.Google Scholar
[17] Gregory, J. A. Smooth interpolation without twist constraints. Waltham, Massachusetts: AcademicPress, p. 7188, 1974.Google Scholar
[18] DeRose, T., Loop, C.. The S-patch: a new multisided patch scheme. ACM TransGraph, vol. 8, p. 204233, 1989.Google Scholar
[19] Piper, B. R.. Visually smooth interpolation with triangular Bézier patches. In: Farin, G., editor. Geometric modeling. Philadelphia: SIAM, p. 221233, 1987.Google Scholar
[20] Peter, J.. Smooth free-form surfaces over irregular meshes generalizing quadratic splines. Computer Aided Geometric Design, vol. 10, p. 347361, 1993.CrossRefGoogle Scholar
[21] Peter, J.. C 1-surface splines. SIAM J. Numer Anal, vol. 32, p. 645666, 1995.CrossRefGoogle Scholar
[22] Catmull, E., Clark, J.. Recursively generated B-spline surfaces on arbitrary topological meshes. Computer Aided Geometric Design, vol. 10, p. 350355, 1978.CrossRefGoogle Scholar
[23] Reif, U.. Biquadratic G-spline surfaces. Computer Aided Geometric Design, vol. 12, p. 193205, 1995.CrossRefGoogle Scholar
[24] Reif, U.. A refineable space of smooth spline surfaces of arbitrary topological genus. Journal of Approximation Theory, vol. 90, p. 174199, 1997.CrossRefGoogle Scholar
[25] Deng, J., Chen, F., and Feng, Y.. Dimensions of spline spaces over T-meshes. Journal of Computational and Applied Mathematics, vol. 194, p. 267283, 2006.CrossRefGoogle Scholar
[26] Schumaker, L. L. and Wang, L.. Approximation power of polynomial splines on T-meshes Computer Aided Geometric Design 29, p. 599612, 2012 CrossRefGoogle Scholar
[27] Takacs, T., Jüttler, B.. “Existence of Stiffness Matrix Integrals for Singularly Parameterized Domains in Isogeometric Analysis”. Computer Methods in Applied Mechanics and Engineering, vol. 200, p. 35683582, 2011.CrossRefGoogle Scholar
[28] Quarteroni, A., Valli, A.. Numerical Approximation of Partial Differential Equations. Springer-Verlag, ISBN 3-540-57111-6, 1997.Google Scholar
[29] Schumaker, L. L., Wang, L.. On Hermite interpolation with polynomial splines on T-meshes. Journal of Computational and Applied Mathematics, vol. 240, p. 4250, 2013.CrossRefGoogle Scholar
[30] Pataki, A., Cerfon, A. J., Freidberg, J. P., Greengard, L. and Neil, M. O.. A fast, high-order solver for the Grad-Shafranov equation. J. Comput. Phys., vol. 243, p. 2845, 2013.CrossRefGoogle Scholar
[31] Mourrain, B.. On the dimension of spline spaces on planar T-meshes. Mathematics of Computation, 83, p. 847871, 2014.CrossRefGoogle Scholar
[32] Burden, R. L., Faires, J. D.. Numerical Analysis. Prindle, Weber and Schnidt, Boston, MA 1985.Google Scholar
[33] Mourrain, B., Vidunas, R. and Villamizar, N. Dimension and bases for geometrically continuous splines on surfaces of arbitrary topology. Computer Aided Geometric Design, in press, 2016.CrossRefGoogle Scholar