Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-25T09:56:39.932Z Has data issue: false hasContentIssue false

Non Destructive Electrical Defect Characterisation and Topography of Silicon Wafers and Epitaxial Layers

Published online by Cambridge University Press:  01 February 2011

K. Dornich
Affiliation:
Technische Universität Bergakademie Freiberg, Silbermannstr.1, D-09596 Freiberg, Germany corresponding author: Electronic address:KayDornich@gmx.de
T. Hahn
Affiliation:
Technische Universität Bergakademie Freiberg, Silbermannstr.1, D-09596 Freiberg, Germany corresponding author: Electronic address:KayDornich@gmx.de
J.R. Niklas
Affiliation:
Technische Universität Bergakademie Freiberg, Silbermannstr.1, D-09596 Freiberg, Germany corresponding author: Electronic address:KayDornich@gmx.de
Get access

Abstract

Recent progress in experimental technique made it possible to improve the sensitivity of microwave detected photoconductivity by several orders of magnitude. This opens completely new possibilities for a contact less non-destructive electrical defect characterization of silicon wafers and even of epitaxial layers on substrates with extremely low resistivity. Electrical properties such as lifetime, mobility and diffusion length can be measured without contacts also at very low injection levels with a resolution only limited by the diffusion length of the charge carriers. The doping level of the material plays no major role.

Owing to the high sensitivity, thermal excitation of charge carriers out of defect levels filled during the photo pulse can also be observed. This leads to defect specific photoconductivity transients which deliver pieces of information like DLTS, however, again without contacts, non critical doping, and with high spatial resolution.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Gründig-Wendrock, B., Jurisch, M., Niklas, J.R., Materials Science and Engineering B91-92, 371375, (2002)Google Scholar
2 Niklas, J.R., Siegel, W., Jurisch, M., Kretzer, U., Mat. Science and Engin. B80, 206209, (2001)Google Scholar
3 Dornich, K., Gründig-Wendrock, B., Hahn, T., Niklas, J.R., Advanced Engineering Materials, 598-602, (2004)Google Scholar
4 Dornich, K., Hahn, T., Niklas, J.R., Freiberger Forschungshefte B327, 270278, (2004)Google Scholar
5 Borghesi, A., Pivac, B., Sassella, A., Stella, A., J. Appl. Phys. 77 (9), 41694244, (1995)Google Scholar
6 Wohlrab, A., Gruendig-Wendrock, B., Jurisch, M., Kiessling, F.-M. and Niklas, J.R., Eur. Phys. J. Appl. Phys., Vol. 27, No. 1-3, 223226, (2004)Google Scholar
7 Gruendig-Wendrock, B. and Niklas, J.R., Phys.stat.sol., No. 3, 885888, (2003)Google Scholar
8 Gruendig-Wendrock, B., Dornich, K., Hahn, T., Kretzer, U. and Niklas, J.R., Eur. P Phys. J. Appl., Vol. 27, No. 1-3, 363366, (2004)Google Scholar