Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-24T04:04:45.867Z Has data issue: false hasContentIssue false

Silicon Field Emission Arrays Coated with CoSi2 Layer Grown by Reactive Chemical Vapor Deposition

Published online by Cambridge University Press:  14 March 2011

Byung Wook Han
Affiliation:
Department of Materials Science and Engineering, KAIST, Taejon 305-701, Korea
Hwa Sung Rhee
Affiliation:
Department of Materials Science and Engineering, KAIST, Taejon 305-701, Korea
Byung Tae Ahn
Affiliation:
Department of Materials Science and Engineering, KAIST, Taejon 305-701, Korea
Nam Yang Lee
Affiliation:
Orion Electric Co., Suwon, 442-749, Korea
Get access

Abstract

We prepared Si emitters coated with an MOCVD CoSi2 layer to improve the emission properties. The CoSi2 layer was grown in situ by reactive chemical vapor deposition of cyclopentadienyl dicarbonyl cobalt at 650 °C. The CoSi2 layer was conformally coated on the Si emitter tips and had a twinned structure at the epitaxial CoSi2/Si interface. The CoSi2-coated Si emitters showed an enhanced emission due to the increase of the number of emitting site from Fowler-Nordheim plot. The fluctuation of emission current was reduced by CoSi2 coating. But the long-term stability was not much improved.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Spindt, C. A., Holland, C. E., Rosengreen, A. and Brodie, I., J. Vac. Sc J. Technol, B11, 468, (1993).Google Scholar
[2] Kanemaru, S., Hirano, T., Tanoue, H and Itoh, J., J. Vac. Sc J.Technol, B14, 1885, (1996).Google Scholar
[3] Krainsky, I. L. and Asnin, V. M., Appl. Phys. Lett. 72, 2574, (1998).Google Scholar
[4] Uh, H. S., Kwon, S. J. and Lee, J. D., J. Vac. Sc J.Technol, B15(2), 472, (1997).Google Scholar
[5] Brintz, W. J. and McGrucer, N. E., J. Vac. Sc J.Technol,B12, 697, (1996).Google Scholar
[6] Branston, D. W. and Stephan, D., IEEE Trans Electron Devices, 38, 2329, (1991)Google Scholar
[7] Shin, I. H. and Lee, T. D., J. Vac. Sc J.Technol, B 17(2), 690, (1999).Google Scholar
[8] Kang, S. Y., Lee, J.H., Song, Y. H., Kim, Y. T. and Cho, K. I. J. Vac. Sc J.Technol, B 16(2), 871, (1998).Google Scholar
[9] Takai, M., Iriguchi, T. and Morimoto, H., J. Vac. Sc J.Technol,B16(2), 790, (1998).Google Scholar
[10] Uh, H. S., Park, B. G. and Lee, J. D., IEEE Electron Devices Letters, vol 19, No 5, 167, (1998).Google Scholar
[11] Yoon, Y. J., Kim, G. B. and Baik, H. K.,J. Vac. Sc J.Technol,B17(2), 627, (1999).Google Scholar
[12] Rhee, H.S. and Ahn, B. T., Appl. Phys. Lett. 74, 3176 (1999).Google Scholar
[13] Mantl, S.,J. Phys. D: Appl. Phys. 31, 1 (1998).Google Scholar
[14] Park, J. S., Sohn, D. K., Kim, Y., Bae, J. U., Lee, B. H., Byun, J.S., and Kim, J. J., Appl. Phys. Lett. 73, 2284 (1998).Google Scholar
[15] Lee, J. D., Uh, H. S., Shim, B. C., Cho, E. S., Oh, C. W., and Kwon, S. J. 11th IVMC, 304,(1998).Google Scholar
[16] Li, Q.. Xu, J.F., Song, H.B., and Liu, X. F., J. Vac. Sc J.Technol,B14(3), 1889, (1996).Google Scholar