Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-25T07:46:04.228Z Has data issue: false hasContentIssue false

Energetics of Protonic Species in Yttrium-doped Barium Zirconate: A Density Functional Theory Study

Published online by Cambridge University Press:  07 February 2013

Massimo Malagoli
Affiliation:
School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332-0400, U.S.A.
M.L. Liu
Affiliation:
School of Material Science & Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0245, U.S.A.
Hyeon Cheol Park
Affiliation:
Advanced Materials Research Center Samsung Advanced Institute of Technology (SAIT), San 14-1, Nongseo-dong, Yongin-si 446-712, Republic of Korea
Angelo Bongiorno
Affiliation:
School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332-0400, U.S.A.
Get access

Abstract

Density functional theory calculations are used to study the equilibrium energetics of protons on the surface and in the bulk of Y-doped BaZrO3. It is shown that protonic species in direct contact with Y dopants have energies lower than in perfect BaZrO3 by up to 0.4 eV. This energetic stabilization is achieved when the protonic species is in direct contact with two Y dopants. On the (001) surface of BaZrO3, protonic species are found to be energetically more stable than in the bulk by 1.1 eV and 1.6 eV on the BaO and ZrO2 surface terminations, respectively. At these terminations, the energy of protons recover the bulk value after penetrating three surface layers, and the energy cost associated with bulk incorporation is larger than 1 eV.

Type
Articles
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Iwahara, H., Esaka, T., Uchida, H., and Maeda, N., Solid State Ionics 359, 3 (1981).Google Scholar
Iwahara, H., in Proton Conductors: Solids, Membranes and Gels-Materials and Devices, edited by Colomban, P. (University Press, Cambridge, 1992), Chap. 8.Google Scholar
Fabbri, E., Pergolesi, D., and Traversa, E., Chem. Soc. Rev. 39, 4355 (2010).CrossRefGoogle Scholar
Lefebvre-Joud, F., Gauthier, G., and Mougin, J., J. Appl. Electrochem. 39, 535 (2009).CrossRefGoogle Scholar
Sundell, P. G., Björketun, M. E., and Wahnström, G., Phys. Rev. B 76, 094301 (2007).CrossRefGoogle Scholar
Zhang, Q., Wahnström, G., Björketun, M. E., Gao, S., and Wang, E., Phys. Rev. Lett. 101, 215902 (2008).CrossRefGoogle Scholar
Merinov, B. and , W. G. III, J. Chem. Phys. 130, 194707 (2009).CrossRefGoogle Scholar
Raiteri, P., Gale, J. D., and Bussi, G., J. Phys.: Condens. Matter 23, 334213 (2011).Google Scholar
Kreuer, K. D., Annu. Rev. Mater. 33, 333 (2003).CrossRefGoogle Scholar
Evarestov, R. A. and Bandura, A. V., Solid State Ionics 188, 25 (2011).CrossRefGoogle Scholar
Björketun, M. E., Sundell, P. G., and Wahnström, G., Phys. Rev. B 76, 054307 (2007).CrossRefGoogle Scholar
Gomez, M. A., Chunduru, M., Chigweshe, L., Foster, L., Fensin, S. J., Fletcher, K. M., and Fernandez, L. E., Appl. Phys. Lett. 132, 214709 (2010).Google Scholar
Kresse, G. and Furthmüller, J., Comput. Mater. Sci. 6, 15 (1996).CrossRefGoogle Scholar
Kresse, G. and Furthmüller, J., Phys. Rev. B 54, 11169 (1996).CrossRefGoogle Scholar
Blöchl, P. E., Phys. Rev. B 50, 17953 (1994).CrossRefGoogle Scholar
Kresse, G. and Joubert, D., Phys. Rev. B 59, 1758 (1999).CrossRefGoogle Scholar
Zhang, Y. and Yang, W., Phys. Rev. Lett. 80, 890 (1998).CrossRefGoogle Scholar
Perdew, J., Burke, K., and Ernzerhof, M., Phys. Rev. Lett. 77, 3865 (1996).CrossRefGoogle Scholar
Akbarzadeh, A. R., Kornev, I., Malibert, C., Bellaiche, L., and Kiat, J. M., Phys. Rev. B 72, 205104 (2005).CrossRefGoogle Scholar
Goretta, K., Park, E., Koritala, R., Cuber, M., Pascual, E., Chen, N., de Arellano-López, A., and Routbort, J., Physica C 309, 245 (1998).CrossRefGoogle Scholar
Robertson, J., J. Vac. Sci. Technol. B 18, 1785 (2000).CrossRefGoogle Scholar
Makov, G. and Payne, M. C., Phys. Rev. B 51, 4014 (1995).CrossRefGoogle Scholar
Freysoldt, C., Neugebauer, J., and de Walle, C. G. V., Phys. Rev. Lett. 102, 106402 (2009).CrossRefGoogle Scholar
Stengel, M., Phys. Rev. B 84, 205432 (2011).CrossRefGoogle Scholar
Iles, N., Finocchi, F., and Khodja, K. D., J. Phys.: Condens. Matter 22, 305001 (2010).Google Scholar
Peressi, M., Binggeli, N., and Baldereschi, A., J. Phys. D: Appl. Phys. 31, 1273 (1998).CrossRefGoogle Scholar